Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.
Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.
Int J Cardiol. 2021 May 15;331:307-315. doi: 10.1016/j.ijcard.2021.01.040. Epub 2021 Jan 30.
To evaluate the feasibility of non-invasive fractional flow reserve (FFR) estimation using histologically-validated assessment of plaque morphology on coronary CTA (CCTA) as inputs to a predictive model further validated against invasive FFR.
Patients (n = 113, 59 ± 8.9 years, 77% male) with suspected coronary artery disease (CAD) who had undergone CCTA and invasive FFR between August 2013 and May 2018 were included. Commercially available software was used to extract quantitative plaque morphology inclusive of both vessel structure and composition. The extracted plaque morphology was then fed as inputs to an optimized artificial neural network to predict lesion-specific ischemia/hemodynamically significant CAD with performance validated by invasive FFR.
A total of 122 lesions were considered, 59 (48%) had low FFR values. Plaque morphology-based FFR assessment achieved an area under the curve, sensitivity and specificity of 0.94, 0.90 and 0.81, respectively, versus 0.71, 0.71, and 0.50, respectively, for an optimized threshold applied to degree of stenosis. The optimized ridge regression model for continuous value estimation of FFR achieved a cross-correlation coefficient of 0.56 and regression slope of 0.59 using cross validation, versus 0.18 and 0.10 for an optimized threshold applied to degree of stenosis.
Our results show that non-invasive plaque morphology-based FFR assessment may be used to predict lesion-specific ischemia resulting in hemodynamically significant CAD. This substantially outperforms degree of stenosis interpretation and has a comparable level of sensitivity and specificity relative to publicly reported results from computational fluid dynamics-based approaches.
评估使用经组织学验证的冠状动脉 CT 血管造影(CCTA)斑块形态评估作为输入,进一步验证对有创血流储备分数(FFR)的预测模型的非侵入性分数 FFR 估计的可行性。
纳入了 2013 年 8 月至 2018 年 5 月期间接受 CCTA 和有创 FFR 检查的疑似冠心病(CAD)患者(n=113,59±8.9 岁,77%男性)。使用商用软件提取包含血管结构和成分的定量斑块形态。然后将提取的斑块形态作为输入输入到经过优化的人工神经网络中,以预测具有有创 FFR 验证的病变特异性缺血/血流动力学显著 CAD。
共考虑了 122 个病变,59 个(48%)病变的 FFR 值较低。基于斑块形态的 FFR 评估在曲线下面积、敏感性和特异性方面的表现分别为 0.94、0.90 和 0.81,而优化的狭窄程度阈值分别为 0.71、0.71 和 0.50。连续 FFR 值估计的优化岭回归模型通过交叉验证获得了 0.56 的交叉相关系数和 0.59 的回归斜率,而优化的狭窄程度阈值分别为 0.18 和 0.10。
我们的结果表明,非侵入性基于斑块形态的 FFR 评估可用于预测导致血流动力学显著 CAD 的病变特异性缺血。与基于计算流体动力学的方法的公开报告结果相比,这明显优于狭窄程度的解释,并且具有相似的敏感性和特异性。