Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA.
Department of Molecular Biosciences and LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
mBio. 2021 Feb 2;12(1):e03380-20. doi: 10.1128/mBio.03380-20.
CsrA is a posttranscriptional global regulator in Although CsrA is critical for survival within the mammalian host, the regulatory targets of CsrA remain mostly unknown. To identify pathways controlled by CsrA, RNA-seq transcriptome analysis was carried out by comparing the wild type and the mutant grown to early exponential, mid-exponential, and stationary phases of growth. This enabled us to identify the global effects of CsrA-mediated regulation throughout the growth cycle. We found that CsrA regulates 22% of the transcriptome, with significant regulation within the gene ontology (GO) processes that involve amino acid transport and metabolism, central carbon metabolism, lipid metabolism, iron uptake, and flagellum-dependent motility. Through CsrA-RNA coimmunoprecipitation experiments, we found that CsrA binds to multiple mRNAs that encode regulatory proteins. These include transcripts encoding the major sigma factors RpoS and RpoE, which may explain how CsrA regulation affects such a large proportion of the transcriptome. Other direct targets include , encoding a central regulator in flagellar gene expression, and , encoding the virulence gene transcription factor AphA. We found that CsrA binds to the mRNA both and , and CsrA significantly increases AphA protein synthesis. The increase in AphA was due to increased translation, not transcription, in the presence of CsrA, consistent with CsrA binding to the transcript and enhancing its translation. CsrA is required for the virulence of and this study illustrates the central role of CsrA in virulence gene regulation., a Gram-negative bacterium, is a natural inhabitant of the aqueous environment. However, once ingested, this bacterium can colonize the human host and cause the disease cholera. In order to successfully transition between its aqueous habitat and the human host, the bacterium must sense changes in its environment and rapidly alter gene expression. Global regulators, including CsrA, play an integral role in altering the expression of a large number of genes to promote adaptation and survival, which is required for intestinal colonization. We used transcriptomics and a directed CsrA-RNA coimmunoprecipitation to characterize the CsrA regulon and found that CsrA alters the expression of more than 800 transcripts in Processes regulated by CsrA include motility, the rugose phenotype, and virulence pathways. CsrA directly binds to the transcript and positively regulates the production of the virulence regulator AphA. Thus, CsrA regulates multiple processes that have been linked to pathogenesis.
CsrA 是一种转录后全局调控因子。虽然 CsrA 对 在哺乳动物宿主中的生存至关重要,但 CsrA 的调控靶点在很大程度上仍然未知。为了确定 CsrA 调控的途径,我们通过比较野生型和突变体在早期指数、中期指数和静止期的生长,进行了 RNA-seq 转录组分析。这使我们能够在整个 生长周期中识别 CsrA 介导的调控的全局影响。我们发现 CsrA 调控了 22%的 转录组,其中包括涉及氨基酸转运和代谢、中心碳代谢、脂质代谢、铁摄取和鞭毛依赖运动的基因本体 (GO) 过程的显著调控。通过 CsrA-RNA 共免疫沉淀实验,我们发现 CsrA 结合到多个编码调节蛋白的 mRNA 上。这些包括编码主要 sigma 因子 RpoS 和 RpoE 的转录本,这可能解释了 CsrA 调控如何影响如此大比例的 转录组。其他直接靶点包括 ,编码鞭毛基因表达中中央调节因子,和 ,编码毒力基因转录因子 AphA。我们发现 CsrA 结合到 mRNA 的 both 和 ,并且 CsrA 显著增加 AphA 蛋白合成。在存在 CsrA 的情况下,AphA 的增加是由于翻译而不是转录增加,这与 CsrA 结合到 转录本并增强其翻译一致。CsrA 是 的毒力所必需的,本研究说明了 CsrA 在毒力基因调控中的核心作用。
是一种革兰氏阴性细菌,是水生环境的天然栖息者。然而,一旦被摄入,这种细菌就可以定植在人类宿主中并引起霍乱病。为了在其水生栖息地和人类宿主之间成功过渡,细菌必须感知环境的变化并迅速改变基因表达。全局调节剂,包括 CsrA,在改变大量基因的表达以促进适应和生存方面发挥着不可或缺的作用,这是肠道定植所必需的。我们使用转录组学和定向 CsrA-RNA 共免疫沉淀来描述 CsrA 调节子,发现 CsrA 在 中改变了超过 800 个转录本的表达。受 CsrA 调控的过程包括运动性、粗糙表型和毒力途径。CsrA 直接结合到 转录本上,并正向调节毒力调节因子 AphA 的产生。因此,CsrA 调节与发病机制相关的多个过程。