School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14853, USA.
Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
Sci Rep. 2021 Feb 2;11(1):2814. doi: 10.1038/s41598-021-81470-7.
Traction force microscopy (TFM) is an important family of techniques used to measure and study the role of cellular traction forces (CTFs) associated with many biological processes. However, current standard TFM methods rely on imaging techniques that do not provide the experimental capabilities necessary to study CTFs within 3D collective and dynamic systems embedded within optically scattering media. Traction force optical coherence microscopy (TF-OCM) was developed to address these needs, but has only been demonstrated for the study of isolated cells embedded within optically clear media. Here, we present computational 4D-OCM methods that enable the study of dynamic invasion behavior of large tumor spheroids embedded in collagen. Our multi-day, time-lapse imaging data provided detailed visualizations of evolving spheroid morphology, collagen degradation, and collagen deformation, all using label-free scattering contrast. These capabilities, which provided insights into how stromal cells affect cancer progression, significantly expand access to critical data about biophysical interactions of cells with their environment, and lay the foundation for future efforts toward volumetric, time-lapse reconstructions of collective CTFs with TF-OCM.
牵引力显微镜(TFM)是一种用于测量和研究与许多生物过程相关的细胞牵引力(CTF)作用的重要技术家族。然而,当前的标准 TFM 方法依赖于成像技术,这些技术无法提供在光学散射介质中嵌入的 3D 集体和动态系统中研究 CTF 的必要实验能力。牵引力光学相干显微镜(TF-OCM)的开发就是为了满足这些需求,但仅在研究嵌入光学透明介质中的分离细胞时得到了验证。在这里,我们提出了计算 4D-OCM 方法,可用于研究嵌入胶原蛋白中的大型肿瘤球体的动态入侵行为。我们的多天、延时成像数据提供了对不断演变的球体形态、胶原蛋白降解和胶原蛋白变形的详细可视化,所有这些都使用无标记散射对比。这些功能提供了关于基质细胞如何影响癌症进展的见解,极大地扩展了对细胞与其环境相互作用的关键数据的访问,并为未来使用 TF-OCM 进行集体 CTF 的容积式、延时重建的努力奠定了基础。