Suppr超能文献

基于热力学原理的胶体纳米晶凝胶

Colloidal Nanocrystal Gels from Thermodynamic Principles.

机构信息

McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States.

Department of Chemistry, University of Texas at Austin, 2506 Speedway, Austin, Texas 78712, United States.

出版信息

Acc Chem Res. 2021 Feb 16;54(4):798-807. doi: 10.1021/acs.accounts.0c00796. Epub 2021 Feb 3.

Abstract

Gels assembled from solvent-dispersed nanocrystals are of interest for functional materials because they promise the opportunity to retain distinctive properties of individual nanocrystals combined with tunable, structure-dependent collective behavior. By incorporating stimuli-responsive components, these materials could also be dynamically reconfigured between structurally distinct states. However, nanocrystal gels have so far been formed mostly through irreversible aggregation, which has limited the realization of these possibilities. Meanwhile, gelation strategies for larger colloidal microparticles have been developed using reversible physical or chemical interactions. These approaches have enabled the experimental navigation of theoretically predicted phase diagrams, helping to establish an understanding of how thermodynamic behavior can guide gel formation in these materials. However, the translation of these principles to the nanoscale poses both practical and fundamental challenges. The molecules guiding assembly can no longer be safely assumed to be vanishingly small compared to the particles nor large compared to the solvent.In this Account, we discuss recent progress toward the assembly of tunable nanocrystal gels using two strategies guided by equilibrium considerations: (1) reversible chemical bonding between functionalized nanocrystals and difunctional linker molecules and (2) nonspecific, polymer-induced depletion attractions. The effective nanocrystal attractions, mediated in both approaches by a secondary molecule, compete against stabilizing repulsions to promote reversible assembly. The structure and properties of the nanocrystal gels are controlled microscopically by the design of the secondary molecule and macroscopically by its concentration. This mode of control is compelling because it largely decouples nanocrystal synthesis and functionalization from the design of interactions that drive assembly. Statistical thermodynamic theory and computer simulation have been applied to simple models that describe the bonding motifs in these assembling systems, furnish predictions for conditions under which gelation is likely to occur, and suggest strategies for tuning and disassembling the gel networks. Insights from these models have guided experimental realizations of reversible gels with optical properties in the infrared range that are sensitive to the gel structure. This process avoids time-consuming and costly trial-and-error experimental investigations to accelerate the development of nanocrystal gel assemblies.These advances highlight the need to better understand interactions between nanocrystals, how interactions give rise to gel structure, and properties that emerge. Such an understanding could suggest new approaches for creating stimuli-responsive and dissipative assembled materials whose properties are tunable on demand through directed reconfiguration of the underlying gel microstructure. It may also make nanocrystal gels amenable to computationally guided design using inverse methods to rapidly optimize experimental parameters for targeted functionalities.

摘要

由溶剂分散的纳米晶组装而成的凝胶因其有机会保留单个纳米晶的独特性质,同时具有可调谐的、结构依赖的集体行为而引起了人们对功能材料的兴趣。通过引入刺激响应组件,这些材料还可以在结构不同的状态之间进行动态重新配置。然而,到目前为止,纳米晶凝胶主要是通过不可逆聚集形成的,这限制了这些可能性的实现。同时,已经开发出用于较大胶体微粒的凝胶化策略,使用可逆的物理或化学相互作用。这些方法使实验能够在理论预测的相图中进行导航,有助于建立对热力学行为如何指导这些材料中凝胶形成的理解。然而,将这些原理转化为纳米尺度既具有实际挑战性,也具有基础性挑战。指导组装的分子不再可以安全地假设与颗粒相比可以忽略不计,也不能与溶剂相比过大。

在本报告中,我们讨论了使用两种基于平衡考虑的策略来组装可调谐的纳米晶凝胶的最新进展:(1)功能化纳米晶体和双官能链接分子之间的可逆化学键合,以及(2)非特异性、聚合物诱导的耗尽吸引力。在这两种方法中,由辅助分子介导的有效纳米晶体吸引力与稳定的排斥力竞争,以促进可逆组装。纳米晶凝胶的结构和性质通过辅助分子的设计从微观上进行控制,通过其浓度从宏观上进行控制。这种控制模式很有吸引力,因为它在很大程度上使纳米晶体合成和功能化与驱动组装的相互作用设计脱钩。统计热力学理论和计算机模拟已应用于描述这些组装系统中键合模式的简单模型,为凝胶化可能发生的条件提供预测,并提出了调整和拆卸凝胶网络的策略。这些模型的见解指导了具有对凝胶结构敏感的红外范围内光学性质的可逆凝胶的实验实现。这个过程避免了耗时且昂贵的反复试验实验研究,从而加速了纳米晶凝胶组装的发展。

这些进展强调了需要更好地理解纳米晶体之间的相互作用、相互作用如何产生凝胶结构以及出现的性质。这种理解可能会为创建刺激响应和耗散组装材料提供新的方法,这些材料的性质可以通过对基础凝胶微结构的定向重构按需进行调整。它还可能使纳米晶凝胶能够通过使用逆方法进行计算引导设计,从而快速优化针对特定功能的实验参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验