Leverhulme Quantum Biology Doctoral Training Centre, UK.
Department of Physics, University of Surrey, Guildford, GU2 7XH, UK.
Phys Chem Chem Phys. 2021 Feb 25;23(7):4141-4150. doi: 10.1039/d0cp05781a.
Proton transfer along the hydrogen bonds of DNA can lead to the creation of short-lived, but biologically relevant point mutations that can further lead to gene mutation and, potentially, cancer. In this work, the energy landscape of the canonical A-T and G-C base pairs (standard, amino-keto) to tautomeric A*-T* and G*-C* (non-standard, imino-enol) Watson-Crick DNA base pairs is modelled with density functional theory and machine-learning nudge-elastic band methods. We calculate the energy barriers and tunnelling rates of hydrogen transfer between and within each base monomer (A, T, G and C). We show that the role of tunnelling in A-T tautomerisation is statistically unlikely due to the presence of a small reverse reaction barrier. On the contrary, the thermal populations of the G*-C* point mutation could be non-trivial and propagate through the replisome. For the direct intramolecular transfer, the reaction is hindered by a substantial energy barrier. However, our calculations indicate that tautomeric bases in their monomeric form have remarkably long lifetimes.
质子沿着 DNA 氢键的转移可能导致短暂但具有生物学相关性的点突变,这些突变可能进一步导致基因突变,并可能导致癌症。在这项工作中,我们使用密度泛函理论和机器学习 nudged-elastic 带方法对标准的 A-T 和 G-C 碱基对(标准的氨基酮型)到非标准的 A*-T和 G-C*(互变异构的亚氨基烯醇型)沃森克里克 DNA 碱基对的能量景观进行了建模。我们计算了每个碱基单体(A、T、G 和 C)之间和内部氢键转移的能量势垒和隧穿率。我们表明,由于存在小的反向反应势垒,氢键在 A-T 互变异构中的隧穿作用在统计学上是不可能的。相反,G*-C*点突变的热种群可能很重要,并通过复制体传播。对于直接的分子内转移,反应受到很大的能垒阻碍。然而,我们的计算表明,单体形式的互变异构碱基具有非常长的寿命。