Suppr超能文献

前瞻性开发和验证自杀青年的计算机化自适应筛查工具。

Prospective Development and Validation of the Computerized Adaptive Screen for Suicidal Youth.

机构信息

Department of Psychiatry, University of Michigan, Ann Arbor.

Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.

出版信息

JAMA Psychiatry. 2021 May 1;78(5):540-549. doi: 10.1001/jamapsychiatry.2020.4576.

Abstract

IMPORTANCE

The rate of suicide among adolescents is rising in the US, yet many adolescents at risk are unidentified and receive no mental health services.

OBJECTIVE

To develop and independently validate a novel computerized adaptive screen for suicidal youth (CASSY) for use as a universal screen for suicide risk in medical emergency departments (EDs).

DESIGN, SETTING, AND PARTICIPANTS: Study 1 of this prognostic study prospectively enrolled adolescent patients at 13 geographically diverse US EDs in the Pediatric Emergency Care Applied Research Network. They completed a baseline suicide risk survey and participated in 3-month telephone follow-ups. Using 3 fixed Ask Suicide-Screening Questions items as anchors and additional items that varied in number and content across individuals, we derived algorithms for the CASSY. In study 2, data were collected from patients at 14 Pediatric Emergency Care Applied Research Network EDs and 1 Indian Health Service hospital. Algorithms were independently validated in a prospective cohort of adolescent patients who also participated in 3-month telephone follow-ups. Adolescents aged 12 to 17 years were consecutively approached during randomly assigned shifts.

EXPOSURES

Presentation at an ED.

MAIN OUTCOME AND MEASURE

A suicide attempt between ED visit and 3-month follow-up, measured via patient and/or parent report.

RESULTS

The study 1 CASSY derivation sample included 2075 adolescents (1307 female adolescents [63.0%]; mean [SD] age, 15.1 [1.61] years) with 3-month follow-ups (72.9% retention [2075 adolescents]). The study 2 validation sample included 2754 adolescents (1711 female adolescents [62.1%]; mean [SD] age, 15.0 [1.65] years), with 3-month follow-ups (69.5% retention [2754 adolescents]). The CASSY algorithms had excellent predictive accuracy for suicide attempt (area under the curve, 0.89 [95% CI, 0.85-0.91]) in study 1. The mean number of adaptively administered items was 11 (range, 5-21). At a specificity of 80%, the CASSY had a sensitivity of 83%. It also demonstrated excellent accuracy in the study 2 validation sample (area under the curve, 0.87 [95% CI, 0.85-0.89]). In this study, the CASSY had a sensitivity of 82.4% for prediction of a suicide attempt at the 80% specificity cutoff established in study 1.

CONCLUSIONS AND RELEVANCE

In this study, the adaptive and personalized CASSY demonstrated excellent suicide attempt risk recognition, which has the potential to facilitate linkage to services.

摘要

重要性

美国青少年自杀率呈上升趋势,但许多处于危险中的青少年未被识别,也未获得任何心理健康服务。

目的

开发并独立验证一种新的用于自杀青少年的计算机化自适应筛查工具(CASSY),作为医疗急救部门(ED)自杀风险的通用筛查工具。

设计、地点和参与者:这项预后研究的研究 1 前瞻性地招募了来自美国 13 个地理位置不同的儿科急救护理应用研究网络(Pediatric Emergency Care Applied Research Network,PECARN)ED 的青少年患者。他们完成了基线自杀风险调查,并参加了 3 个月的电话随访。使用 3 个固定的自杀筛查问题作为锚点,以及根据个人情况变化的其他问题,我们推导出 CASSY 的算法。在研究 2 中,数据来自儿科急救护理应用研究网络的 14 个 ED 和 1 个印度卫生服务医院的患者。在一个参加了 3 个月电话随访的青少年患者前瞻性队列中,独立验证了这些算法。在随机分配的轮班期间,连续接近 12 至 17 岁的青少年。

暴露

就诊于 ED。

主要结局和测量

ED 就诊和 3 个月随访期间的自杀企图,通过患者和/或家长报告进行测量。

结果

研究 1 的 CASSY 推导样本包括 2075 名青少年(女性青少年 1307 名[63.0%];平均[SD]年龄 15.1[1.61]岁),有 3 个月随访(72.9%的患者[2075 名青少年]保留)。研究 2 的验证样本包括 2754 名青少年(女性青少年 1711 名[62.1%];平均[SD]年龄 15.0[1.65]岁),有 3 个月随访(69.5%的患者[2754 名青少年]保留)。CASSY 算法在研究 1 中对自杀企图具有出色的预测准确性(曲线下面积,0.89[95%CI,0.85-0.91])。平均自适应管理的项目数为 11 个(范围:5-21 个)。在特异性为 80%时,CASSY 的灵敏度为 83%。它在研究 2 的验证样本中也表现出出色的准确性(曲线下面积,0.87[95%CI,0.85-0.89])。在这项研究中,CASSY 在研究 1 中确定的特异性为 80%的自杀企图预测方面具有 82.4%的灵敏度。

结论和相关性

在这项研究中,适应性和个性化的 CASSY 显示出出色的自杀企图风险识别能力,这有可能促进与服务的联系。

相似文献

引用本文的文献

5
Suicide Prevention in Youth.青少年自杀预防
Curr Psychiatry Rep. 2025 Sep;27(9):500-508. doi: 10.1007/s11920-025-01620-w. Epub 2025 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验