Suppr超能文献

使用机器学习算法对半胱氨酰白三烯1受体拮抗剂进行分类模型和构效关系分析。

Classification models and SAR analysis on CysLT1 receptor antagonists using machine learning algorithms.

作者信息

Wang Hongzhao, Qin Zijian, Yan Aixia

机构信息

State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, University of Chemical Technology, Beijing, People's Republic of China.

出版信息

Mol Divers. 2021 Aug;25(3):1597-1616. doi: 10.1007/s11030-020-10165-4. Epub 2021 Feb 3.

Abstract

Cysteinyl leukotrienes 1 (CysLT1) receptor is a promising drug target for rhinitis or other allergic diseases. In our study, we built classification models to predict bioactivities of CysLT1 receptor antagonists. We built a dataset with 503 CysLT1 receptor antagonists which were divided into two groups: highly active molecules (IC < 1000 nM) and weakly active molecules (IC ≥ 1000 nM). The molecules were characterized by several descriptors including CORINA descriptors, MACCS fingerprints, Morgan fingerprint and molecular SMILES. For CORINA descriptors and two types of fingerprints, we used the random forests (RF) and deep neural networks (DNN) to build models. For molecular SMILES, we used recurrent neural networks (RNN) with the self-attention to build models. The accuracies of test sets for all models reached 85%, and the accuracy of the best model (Model 2C) was 93%. In addition, we made structure-activity relationship (SAR) analyses on CysLT1 receptor antagonists, which were based on the output from the random forest models and RNN model. It was found that highly active antagonists usually contained the common substructures such as tetrazoles, indoles and quinolines. These substructures may improve the bioactivity of the CysLT1 receptor antagonists.

摘要

半胱氨酰白三烯1(CysLT1)受体是鼻炎或其他过敏性疾病中一个很有前景的药物靶点。在我们的研究中,我们构建了分类模型来预测CysLT1受体拮抗剂的生物活性。我们构建了一个包含503种CysLT1受体拮抗剂的数据集,这些拮抗剂被分为两组:高活性分子(IC<1000 nM)和低活性分子(IC≥1000 nM)。这些分子通过包括CORINA描述符、MACCS指纹、摩根指纹和分子SMILES在内的几种描述符进行表征。对于CORINA描述符和两种类型的指纹,我们使用随机森林(RF)和深度神经网络(DNN)来构建模型。对于分子SMILES,我们使用带有自注意力机制的循环神经网络(RNN)来构建模型。所有模型的测试集准确率均达到85%,最佳模型(模型2C)的准确率为93%。此外,我们基于随机森林模型和RNN模型的输出对CysLT1受体拮抗剂进行了构效关系(SAR)分析。结果发现,高活性拮抗剂通常包含四唑、吲哚和喹啉等常见子结构。这些子结构可能会提高CysLT1受体拮抗剂的生物活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验