Suppr超能文献

深度学习在分子生成中的应用。

Deep learning for molecular generation.

机构信息

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, PR China.

BNLMS, State Key Laboratory for Structural Chemistry of Unstable & Stable Species, College of Chemistry & Molecular Engineering, Peking University, Beijing, 100871, PR China.

出版信息

Future Med Chem. 2019 Mar;11(6):567-597. doi: 10.4155/fmc-2018-0358. Epub 2019 Jan 30.

Abstract

De novo drug design aims to generate novel chemical compounds with desirable chemical and pharmacological properties from scratch using computer-based methods. Recently, deep generative neural networks have become a very active research frontier in de novo drug discovery, both in theoretical and in experimental evidence, shedding light on a promising new direction of automatic molecular generation and optimization. In this review, we discussed recent development of deep learning models for molecular generation and summarized them as four different generative architectures with four different optimization strategies. We also discussed future directions of deep generative models for de novo drug design.

摘要

从头药物设计旨在使用基于计算机的方法从零开始生成具有理想化学和药理学性质的新型化合物。最近,深度生成神经网络在从头药物发现的理论和实验证据方面都成为了一个非常活跃的研究前沿,为自动分子生成和优化开辟了一个很有前途的新方向。在这篇综述中,我们讨论了分子生成的深度学习模型的最新进展,并将它们总结为具有四种不同优化策略的四种不同生成架构。我们还讨论了从头药物设计的深度生成模型的未来方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验