Suppr超能文献

院内患者流动与医院内获得性感染传播的相关性——一项基于数学模型的研究。

Relevance of intra-hospital patient movements for the spread of healthcare-associated infections within hospitals - a mathematical modeling study.

机构信息

Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Sevilla, Spain.

出版信息

PLoS Comput Biol. 2021 Feb 3;17(2):e1008600. doi: 10.1371/journal.pcbi.1008600. eCollection 2021 Feb.

Abstract

The aim of this study is to analyze patient movement patterns between hospital departments to derive the underlying intra-hospital movement network, and to assess if movement patterns differ between patients at high or low risk of colonization. For that purpose, we analyzed patient electronic medical record data from five hospitals to extract information on risk stratification and patient intra-hospital movements. Movement patterns were visualized as networks, and network centrality measures were calculated. Next, using an agent-based model where agents represent patients and intra-hospital patient movements were explicitly modeled, we simulated the spread of multidrug resistant enterobacteriacae (MDR-E) inside a hospital. Risk stratification of patients according to certain ICD-10 codes revealed that length of stay, patient age, and mean number of movements per admission were higher in the high-risk groups. Movement networks in all hospitals displayed a high variability among departments concerning their network centrality and connectedness with a few highly connected departments and many weakly connected peripheral departments. Simulating the spread of a pathogen in one hospital network showed positive correlation between department prevalence and network centrality measures. This study highlights the importance of intra-hospital patient movements and their possible impact on pathogen spread. Targeting interventions to departments of higher (weighted) degree may help to control the spread of MDR-E. Moreover, when the colonization status of patients coming from different departments is unknown, a ranking system based on department centralities may be used to design more effective interventions that mitigate pathogen spread.

摘要

本研究旨在分析医院科室间的患者移动模式,以推导出潜在的院内移动网络,并评估高风险和低风险定植患者的移动模式是否存在差异。为此,我们分析了来自五家医院的患者电子病历数据,以提取风险分层和患者院内移动信息。移动模式被可视化作为网络,并计算了网络中心性度量。接下来,我们使用一个基于代理的模型,其中代理代表患者,并且明确模拟了院内患者的移动,模拟了耐多药肠杆菌(MDR-E)在医院内的传播。根据某些 ICD-10 代码对患者进行风险分层显示,高风险组的住院时间、患者年龄和每次入院的平均移动次数更高。所有医院的移动网络在部门之间的网络中心性和连通性方面表现出高度的可变性,存在少数高度连接的部门和许多弱连接的外围部门。在一个医院网络中模拟病原体的传播表明,科室流行率与网络中心性度量之间存在正相关。本研究强调了院内患者移动及其对病原体传播可能产生的影响的重要性。针对中心度较高(加权)的科室的干预措施可能有助于控制 MDR-E 的传播。此外,当来自不同科室的患者的定植状态未知时,可以使用基于科室中心性的排名系统来设计更有效的干预措施,以减轻病原体的传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/481b/7857595/d52b498d13b7/pcbi.1008600.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验