Rastogi Chandresh Kumar, Lu Elsa, Tam Jason, Pichaandi Jothir Mayanantham, Howe Jane, Winnik Mitchell A
Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada.
Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada.
Langmuir. 2021 Feb 16;37(6):2146-2152. doi: 10.1021/acs.langmuir.0c03346. Epub 2021 Feb 3.
NaLnF nanoparticles (NPs) with lighter lanthanides (where Ln = La, Ce, Nd, or Pr) are more difficult to prepare than those with heavier lanthanides [Naduviledathu et al. ., , , 5689]. Our knowledge is weakest for NaLnF NPs with the lowest atomic mass lanthanides (Yan's group 1: La to Nd) and more advanced for group 2 (Sm to Tb) NaLnF NPs [Mai et al., ., , , 6426]. Here we focus on the synthesis of NaNdF NPs. We employed the high-temperature chemical coprecipitation method and explored the influence of a wide range of synthesis parameters (e.g., reaction time and temperature, precursor ratios (Na/Nd and F/Nd), choice of a sodium precursor (Na-oleate or NaOH), and the amount of oleic acid) on the size and uniformity of the NPs obtained. We tried to identify "sweet spots" in the reaction space that led to uniform NaNdF NPs with sizes appropriate for mass tag applications in mass cytometry. We were able to obtain NPs with a variety of sizes in the range of 5-38 nm with several different shapes (e.g., polyhedra, spheres, and rods). XRD patterns recorded for aliquots collected at different reaction time intervals revealed that NaNdF nucleated in the cubic phase (α) and then transformed to the hexagonal phase (β) as the reaction progressed up to 2 h. A very striking observation was that the NPs synthesized using NaOH as a reactant preferred to remain in the α-phase, and for a lower reaction temperature (285 °C), did not undergo a phase transformation to the β-phase over 2 h of reaction time. Under similar experimental conditions, NPs prepared using Na-oleate exhibited an α → β phase transformation. Nevertheless, NaNdF NPs prepared at a higher temperature (315 °C) using either of the Na precursors exhibited the α → β phase transformation over time. This transition, however, appeared to be faster in the case of the NPs synthesized using Na-oleate. We found that, in many instances, syntheses carried out using Na-oleate produced more uniform NPs compared to those synthesized using NaOH. Under the conditions we employed for the Na-oleate precursor, the NPs initially formed were polydisperse spheres that evolved into irregular polyhedra and eventually formed more uniform rod-shaped NPs. The aspect ratio of the final NPs depended on the Na/Nd precursor ratio. High-resolution transmission electron micrographs and corresponding fast Fourier transform of the data provided information about the preferred growth direction of the NaNdF nanorods.
含有较轻镧系元素(其中Ln = La、Ce、Nd或Pr)的NaLnF纳米颗粒(NPs)比含有较重镧系元素的纳米颗粒更难制备[纳杜维莱达图等人,,,5689]。对于具有最低原子质量镧系元素的NaLnF NPs(Yan的第1组:La到Nd),我们的了解最少,而对于第2组(Sm到Tb)的NaLnF NPs,我们的了解更多[迈等人,,,6426]。在这里,我们专注于NaNdF NPs的合成。我们采用高温化学共沉淀法,探索了各种合成参数(例如反应时间和温度、前驱体比例(Na/Nd和F/Nd)、钠前驱体的选择(油酸钠或NaOH)以及油酸的用量)对所得纳米颗粒尺寸和均匀性的影响。我们试图在反应空间中确定“最佳点”,以获得尺寸适合用于质谱流式细胞术质量标记应用的均匀NaNdF NPs。我们能够获得尺寸在5 - 38 nm范围内、具有几种不同形状(例如多面体、球体和棒体)的纳米颗粒。对在不同反应时间间隔收集的等分试样记录的XRD图谱表明,NaNdF在立方相(α)中形核,然后随着反应进行至2小时转变为六方相(β)。一个非常显著的观察结果是,使用NaOH作为反应物合成的纳米颗粒倾向于保留在α相中,并且在较低的反应温度(285°C)下,在2小时的反应时间内不会发生向β相的相变。在类似的实验条件下,使用油酸钠制备的纳米颗粒表现出α→β相变。然而,使用任何一种钠前驱体在较高温度(315°C)下制备的NaNdF NPs随着时间的推移都表现出α→β相变。然而,在使用油酸钠合成的纳米颗粒的情况下,这种转变似乎更快。我们发现,在许多情况下,与使用NaOH合成的纳米颗粒相比,使用油酸钠进行的合成产生的纳米颗粒更均匀。在我们用于油酸钠前驱体的条件下,最初形成的纳米颗粒是多分散的球体,它们演变成不规则的多面体,最终形成更均匀的棒状纳米颗粒。最终纳米颗粒的纵横比取决于Na/Nd前驱体比例。高分辨率透射电子显微镜图像和相应的数据快速傅里叶变换提供了有关NaNdF纳米棒优选生长方向的信息。