Suppr超能文献

LICAR:一种用于对通过基于类别色谱分离并使用多反应监测获取的靶向脂质组学数据进行同位素校正的应用程序。

LICAR: An Application for Isotopic Correction of Targeted Lipidomic Data Acquired with Class-Based Chromatographic Separations Using Multiple Reaction Monitoring.

作者信息

Gao Liang, Ji Shanshan, Burla Bo, Wenk Markus R, Torta Federico, Cazenave-Gassiot Amaury

机构信息

Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive #03-03, 117456 Singapore.

Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, 28 Medical Drive #03-03, 117456 Singapore.

出版信息

Anal Chem. 2021 Feb 16;93(6):3163-3171. doi: 10.1021/acs.analchem.0c04565. Epub 2021 Feb 3.

Abstract

Lipidomics is developing as an important area in biomedical and clinical research. Reliable quantification of lipid species is required for clinical translation of lipidomic studies. Hydrophilic interaction chromatography (HILIC), normal-phase liquid chromatography (NPLC), and supercritical fluid chromatography (SFC) are commonly used techniques in lipidomics and provide class-based separation of lipids. While co-elution of lipid species and their internal standards is an advantage for accurate quantification, it leads to isotopic overlap between species of the same lipid class. In shotgun lipidomics, isotopic correction is typically done based on elemental formulas of precursor ions. In multiple reaction monitoring (MRM) analyses, however, this approach should not be used, as the overall contribution of heavy isotopes to the MRM transitions' intensities depends on their location in the molecule with respect to the fragmentation pattern. We present an algorithm, provided in the R programming language, for isotopic correction in class-based separation using MRM, extracting relevant structural information from MRM transitions to apply adequate isotopic correction factors. Using standards, we show that our algorithm accurately estimates the isotopic contribution of isotopologues to MRM transitions' measured intensities. Using human plasma as an example, we demonstrate the necessity of adequate isotopic correction for accurate quantitation of lipids measured by MRM with class-based chromatographic separation. We show that over a third of the measured phosphatidylcholine species had their intensity corrected by more than 10%. This isotopic correction algorithm and R-implemented application enable a more accurate quantification of lipids in class-based separation-MRM, a prerequisite for successful translation of lipidomic applications.

摘要

脂质组学正发展成为生物医学和临床研究中的一个重要领域。脂质组学研究的临床转化需要对脂质种类进行可靠的定量。亲水作用色谱法(HILIC)、正相液相色谱法(NPLC)和超临界流体色谱法(SFC)是脂质组学中常用的技术,可对脂质进行基于类别的分离。虽然脂质种类与其内标物的共洗脱有利于准确定量,但这会导致同一脂质类别的不同种类之间出现同位素重叠。在鸟枪法脂质组学中,同位素校正通常基于前体离子的元素分子式进行。然而,在多反应监测(MRM)分析中,不应使用这种方法,因为重同位素对MRM跃迁强度的总体贡献取决于它们在分子中相对于裂解模式的位置。我们提出了一种用R编程语言提供的算法,用于在基于类别的分离中使用MRM进行同位素校正,从MRM跃迁中提取相关结构信息以应用适当的同位素校正因子。通过使用标准品,我们表明我们的算法能够准确估计同位素异构体对MRM跃迁测量强度的同位素贡献。以人血浆为例,我们证明了对于基于类别的色谱分离通过MRM测量脂质进行准确定量时,进行适当同位素校正的必要性。我们表明,超过三分之一的测量磷脂酰胆碱种类的强度校正超过了10%。这种同位素校正算法和R实现的应用能够在基于类别的分离-MRM中更准确地定量脂质,这是脂质组学应用成功转化的前提条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验