Suppr超能文献

纵向研究中的缺失数据。

Missing data in longitudinal studies.

作者信息

Laird N M

机构信息

Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115.

出版信息

Stat Med. 1988 Jan-Feb;7(1-2):305-15. doi: 10.1002/sim.4780070131.

Abstract

When observations are made repeatedly over time on the same experimental units, unbalanced patterns of observations are a common occurrence. This complication makes standard analyses more difficult or inappropriate to implement, means loss of efficiency, and may introduce bias into the results as well. Some possible approaches to dealing with missing data include complete case analyses, univariate analyses with adjustments for variance estimates, two-step analyses, and likelihood based approaches. Likelihood approaches can be further categorized as to whether or not an explicit model is introduced for the non-response mechanism. This paper will review the use of likelihood based analyses for longitudinal data with missing responses, both from the point of view of ease of implementation and appropriateness in view of the non-response mechanism. Models for both measured and dichotomous outcome data will be discussed. The appropriateness of some non-likelihood based analyses is briefly considered.

摘要

当在相同的实验单位上随时间反复进行观察时,观察结果的不平衡模式很常见。这种复杂性使得标准分析更难实施或不适合实施,意味着效率损失,并且可能也会给结果引入偏差。处理缺失数据的一些可能方法包括完全病例分析、对方差估计进行调整的单变量分析、两步分析以及基于似然的方法。基于似然的方法可以根据是否为无应答机制引入明确模型进一步分类。本文将从实施的简易性以及鉴于无应答机制的适用性这两个角度,回顾基于似然分析在纵向数据缺失应答情况下的应用。将讨论测量结果数据和二分结果数据的模型。还将简要考虑一些非基于似然分析的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验