Suppr超能文献

信息删失纵向数据的分析方法。

Methods for the analysis of informatively censored longitudinal data.

作者信息

Schluchter M D

机构信息

Department of Biostatistics and Epidemiology, Cleveland Clinic Foundation, Ohio 44195.

出版信息

Stat Med. 1992 Oct-Nov;11(14-15):1861-70. doi: 10.1002/sim.4780111408.

Abstract

This paper describes the problem of informative censoring in longitudinal studies where the primary outcome is rate of change in a continuous variable. Standard approaches based on the linear random effects model are valid only when the data are missing in a non-ignorable fashion. Informative censoring, which is a special type of non-ignorably missing data, occurs when the probability of early termination is related to an individual subject's true rate of change. When present, informative censoring causes bias in standard likelihood-based analyses, as well as in weighted averages of individual least-squares slopes. This paper reviews several methods proposed by others for analysis of informatively censored longitudinal data, and outlines a new approach based on a log-normal survival model. Maximum likelihood estimates may be obtained via the EM algorithm. Advantages of this approach are that it allows general unbalanced data caused by staggered entry and unequally-timed visits, it utilizes all available data, including data from patients with only a single measurement, and it provides a unified method for estimating all model parameters. Issues related to study design when informative censoring may occur are also discussed.

摘要

本文描述了纵向研究中的信息删失问题,其中主要结局是连续变量的变化率。基于线性随机效应模型的标准方法仅在数据以不可忽略的方式缺失时才有效。信息删失是一种特殊类型的不可忽略的缺失数据,当早期终止的概率与个体受试者的真实变化率相关时就会发生。出现信息删失时,会导致基于标准似然性的分析以及个体最小二乘斜率加权平均值产生偏差。本文回顾了其他人提出的几种用于分析信息删失纵向数据的方法,并概述了一种基于对数正态生存模型的新方法。最大似然估计可以通过期望最大化(EM)算法获得。该方法的优点是它允许由交错进入和不同时间就诊导致的一般不平衡数据,它利用了所有可用数据,包括仅进行过一次测量的患者的数据,并且它提供了一种统一的方法来估计所有模型参数。还讨论了可能发生信息删失时与研究设计相关的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验