Suppr超能文献

蓝斑核的儿茶酚胺能神经支配调节认知行为。

Catecholaminergic Innervation of the Lateral Nucleus of the Cerebellum Modulates Cognitive Behaviors.

机构信息

Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195

Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, Washington 98108.

出版信息

J Neurosci. 2021 Apr 14;41(15):3512-3530. doi: 10.1523/JNEUROSCI.2406-20.2021. Epub 2021 Feb 3.

Abstract

The cerebellum processes neural signals related to rewarding and aversive stimuli, suggesting that the cerebellum supports nonmotor functions in cognitive and emotional domains. Catecholamines are a class of neuromodulatory neurotransmitters well known for encoding such salient stimuli. Catecholaminergic modulation of classical cerebellar functions have been demonstrated. However, a role for cerebellar catecholamines in modulating cerebellar nonmotor functions is unknown. Using biochemical methods in male mice, we comprehensively mapped TH fibers throughout the entire cerebellum and known precerebellar nuclei. Using electrochemical (fast scan cyclic voltammetry), and viral/genetic methods to selectively delete in fibers innervating the lateral cerebellar nucleus (LCN), we interrogated sources and functional roles of catecholamines innervating the LCN, which is known for its role in supporting cognition. The LCN has the most TH fibers in cerebellum, as well as the most change in rostrocaudal expression among the cerebellar nuclei. Norepinephrine is the major catecholamine measured in LCN. Distinct catecholaminergic projections to LCN arise only from locus coeruleus, and a subset of Purkinje cells that are positive for staining of TH. LC stimulation was sufficient to produce catecholamine release in LCN. Deletion of in fibers innervating LCN (LCN-) resulted in impaired sensorimotor integration, associative fear learning, response inhibition, and working memory in LCN- mice. Strikingly, selective inhibition of excitatory LCN output neurons with inhibitory designer receptor exclusively activated by designer drugs led to facilitation of learning on the same working memory task impaired in LCN- mice. Collectively, these data demonstrate a role for LCN catecholamines in cognitive behaviors. Here, we report on interrogating sources and functional roles of catecholamines innervating the lateral nucleus of the cerebellum (LCN). We map and quantify expression of TH, the rate-limiting enzyme in catecholamine synthesis, in the entire cerebellar system, including several precerebellar nuclei. We used cyclic voltammetry and pharmacology to demonstrate sufficiency of LC stimulation to produce catecholamine release in LCN. We used advanced viral techniques to map and selectively KO catecholaminergic neurotransmission to the LCN, and characterized significant cognitive deficits related to this manipulation. Finally, we show that inhibition of excitatory LCN neurons with designer receptor exclusively activated by designer drugs, designed to mimic Gi-coupled catecholamine GPCR signaling, results in facilitation of a working memory task impaired in LCN-specific TH KO mice.

摘要

小脑处理与奖励和厌恶刺激相关的神经信号,表明小脑支持认知和情绪领域的非运动功能。儿茶酚胺是一类众所周知的神经调质递质,可编码此类显著刺激。已经证明了儿茶酚胺对经典小脑功能的调制作用。然而,小脑儿茶酚胺在调节小脑非运动功能中的作用尚不清楚。我们使用生化方法在雄性小鼠中全面绘制了整个小脑和已知的小脑前核中的 TH 纤维图谱。使用电化学(快速扫描循环伏安法)和病毒/遗传方法选择性删除支配外侧小脑核(LCN)的纤维中的 ,我们研究了支配已知支持认知的 LCN 的儿茶酚胺的来源和功能作用。LCN 是小脑中拥有 TH 纤维最多的核团,也是小脑核团中表现出最大的头尾表达差异的核团。去甲肾上腺素是 LCN 中测量到的主要儿茶酚胺。仅来自蓝斑核和对 TH 染色呈阳性的一部分浦肯野细胞的不同儿茶酚胺投射到 LCN 中。LC 刺激足以在 LCN 中产生儿茶酚胺释放。删除支配 LCN 的纤维中的 (LCN-)会导致 LCN-小鼠的感觉运动整合、联想性恐惧学习、反应抑制和工作记忆受损。引人注目的是,用专门激活药物设计受体的抑制性设计受体选择性抑制兴奋性 LCN 输出神经元,会促进在同样的工作记忆任务上的学习,而该任务在 LCN-小鼠中受损。总的来说,这些数据表明 LCN 儿茶酚胺在认知行为中起作用。在这里,我们报告了对支配外侧小脑核(LCN)的儿茶酚胺的来源和功能作用的研究。我们绘制并定量了整个小脑系统中儿茶酚胺合成限速酶 TH 的表达,包括几个小脑前核。我们使用循环伏安法和药理学证明了 LC 刺激足以在 LCN 中产生儿茶酚胺释放。我们使用先进的病毒技术来映射和选择性敲除到 LCN 的儿茶酚胺能神经传递,并描述了与这种操作相关的显著认知缺陷。最后,我们发现用专门激活药物设计受体的抑制性设计受体抑制兴奋性 LCN 神经元,模拟与 Gi 偶联儿茶酚胺 GPCR 信号传导,会促进在 LCN 特异性 TH KO 小鼠中受损的工作记忆任务的完成。

相似文献

引用本文的文献

9
Increased understanding of complex neuronal circuits in the cerebellar cortex.对小脑皮质中复杂神经回路的理解不断加深。
Front Cell Neurosci. 2024 Oct 21;18:1487362. doi: 10.3389/fncel.2024.1487362. eCollection 2024.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验