小脑驱动的皮层动力学能够促成任务习得、转换及巩固。
Cerebellar-driven cortical dynamics can enable task acquisition, switching and consolidation.
作者信息
Pemberton Joseph, Chadderton Paul, Costa Rui Ponte
机构信息
Computational Neuroscience Unit, Intelligent Systems Labs, Faculty of Engineering, University of Bristol, Bristol, UK.
Centre for Neural Circuits and Behaviour, Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, UK.
出版信息
Nat Commun. 2024 Dec 30;15(1):10913. doi: 10.1038/s41467-024-55315-6.
The brain must maintain a stable world model while rapidly adapting to the environment, but the underlying mechanisms are not known. Here, we posit that cortico-cerebellar loops play a key role in this process. We introduce a computational model of cerebellar networks that learn to drive cortical networks with task-outcome predictions. First, using sensorimotor tasks, we show that cerebellar feedback in the presence of stable cortical networks is sufficient for rapid task acquisition and switching. Next, we demonstrate that, when trained in working memory tasks, the cerebellum can also underlie the maintenance of cognitive-specific dynamics in the cortex, explaining a range of optogenetic and behavioural observations. Finally, using our model, we introduce a systems consolidation theory in which task information is gradually transferred from the cerebellum to the cortex. In summary, our findings suggest that cortico-cerebellar loops are an important component of task acquisition, switching, and consolidation in the brain.
大脑必须在快速适应环境的同时维持一个稳定的世界模型,但其潜在机制尚不清楚。在此,我们假设皮质-小脑环路在这一过程中起关键作用。我们引入了一个小脑网络的计算模型,该模型通过任务结果预测来学习驱动皮质网络。首先,利用感觉运动任务,我们表明在稳定的皮质网络存在的情况下,小脑反馈足以实现快速的任务习得和转换。接下来,我们证明,当在工作记忆任务中进行训练时,小脑也可以作为皮质中认知特异性动力学维持的基础,解释了一系列光遗传学和行为学观察结果。最后,利用我们的模型,我们提出了一种系统巩固理论,其中任务信息逐渐从小脑转移到皮质。总之,我们的研究结果表明,皮质-小脑环路是大脑中任务习得、转换和巩固的重要组成部分。