文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种快速高效的共定位算法,用于识别多个性状之间共享的遗传风险因素。

A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits.

机构信息

MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, CB2 0SR, UK.

Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK.

出版信息

Nat Commun. 2021 Feb 3;12(1):764. doi: 10.1038/s41467-020-20885-8.


DOI:10.1038/s41467-020-20885-8
PMID:33536417
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7858636/
Abstract

Genome-wide association studies (GWAS) have identified thousands of genomic regions affecting complex diseases. The next challenge is to elucidate the causal genes and mechanisms involved. One approach is to use statistical colocalization to assess shared genetic aetiology across multiple related traits (e.g. molecular traits, metabolic pathways and complex diseases) to identify causal pathways, prioritize causal variants and evaluate pleiotropy. We propose HyPrColoc (Hypothesis Prioritisation for multi-trait Colocalization), an efficient deterministic Bayesian algorithm using GWAS summary statistics that can detect colocalization across vast numbers of traits simultaneously (e.g. 100 traits can be jointly analysed in around 1 s). We perform a genome-wide multi-trait colocalization analysis of coronary heart disease (CHD) and fourteen related traits, identifying 43 regions in which CHD colocalized with ≥1 trait, including 5 previously unknown CHD loci. Across the 43 loci, we further integrate gene and protein expression quantitative trait loci to identify candidate causal genes.

摘要

全基因组关联研究(GWAS)已经确定了数千个影响复杂疾病的基因组区域。下一步的挑战是阐明涉及的因果基因和机制。一种方法是使用统计共定位来评估多个相关特征(例如分子特征、代谢途径和复杂疾病)之间的共享遗传病因,以确定因果途径、优先考虑因果变体和评估多效性。我们提出了 HyPrColoc(多特征共定位的假设优先级),这是一种使用 GWAS 汇总统计数据的高效确定性贝叶斯算法,可以同时检测大量特征之间的共定位(例如,大约 1 秒内可以联合分析 100 个特征)。我们对冠心病(CHD)和 14 种相关特征进行了全基因组多特征共定位分析,确定了 43 个与 CHD 共定位的区域≥1 个特征,包括 5 个先前未知的 CHD 基因座。在这 43 个基因座中,我们进一步整合基因和蛋白质表达数量性状基因座,以确定候选因果基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/69ba0c74b74f/41467_2020_20885_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/a81657416c9e/41467_2020_20885_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/efa8ee0e6887/41467_2020_20885_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/5d8ad8f0b63c/41467_2020_20885_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/73d3fbbd7a1e/41467_2020_20885_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/99d2b132f9db/41467_2020_20885_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/81925fb312e5/41467_2020_20885_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/502fef64c7ad/41467_2020_20885_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/69ba0c74b74f/41467_2020_20885_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/a81657416c9e/41467_2020_20885_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/efa8ee0e6887/41467_2020_20885_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/5d8ad8f0b63c/41467_2020_20885_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/73d3fbbd7a1e/41467_2020_20885_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/99d2b132f9db/41467_2020_20885_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/81925fb312e5/41467_2020_20885_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/502fef64c7ad/41467_2020_20885_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b34/7858636/69ba0c74b74f/41467_2020_20885_Fig8_HTML.jpg

相似文献

[1]
A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits.

Nat Commun. 2021-2-3

[2]
ezQTL: A Web Platform for Interactive Visualization and Colocalization of QTLs and GWAS Loci.

Genomics Proteomics Bioinformatics. 2022-6

[3]
Prioritization of causal genes from genome-wide association studies by Bayesian data integration across loci.

PLoS Comput Biol. 2025-1-7

[4]
Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution.

Hum Mol Genet. 2019-12-15

[5]
Probabilistic colocalization of genetic variants from complex and molecular traits: promise and limitations.

Am J Hum Genet. 2021-1-7

[6]
Estimating colocalization probability from limited summary statistics.

BMC Bioinformatics. 2021-5-17

[7]
Genetic colocalization atlas points to common regulatory sites and genes for hematopoietic traits and hematopoietic contributions to disease phenotypes.

BMC Med Genomics. 2020-6-29

[8]
Local Genetic Correlation Gives Insights into the Shared Genetic Architecture of Complex Traits.

Am J Hum Genet. 2017-11-2

[9]
GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes.

Nat Commun. 2018-12-3

[10]
Bayesian Genetic Colocalization Test of Two Traits Using coloc.

Curr Protoc. 2022-12

引用本文的文献

[1]
Shared genetic architecture between grip strength and cognitive function: insights from large-scale genome-wide cross-trait analysis.

Front Genet. 2025-8-14

[2]
New therapeutic targets for endometriosis predicted through mendelian randomization analysis and case-control trials.

Front Genet. 2025-8-15

[3]
Clustering of lymphoid neoplasms by cell of origin, somatic mutation and drug usage profiles: a multi-trait genome-wide association study.

Blood Cancer J. 2025-8-29

[4]
Exploring the common genetic basis of metabolic syndrome-related diseases and chronic kidney disease: insights from extensive genome-wide cross-trait analyses.

BioData Min. 2025-8-17

[5]
The proteogenomic landscape of the human kidney and implications for cardio-kidney-metabolic health.

Nat Med. 2025-8-12

[6]
Decoding the epigenetic-immune nexus in hepatocellular carcinoma: a Mendelian randomization study reveals BTN3A2, S100A12 and TRIM27 as white blood cell regulators.

BMC Cancer. 2025-8-8

[7]
Genetic evidence for causal effects of inflammatory protein factors on breast cancer.

Discov Oncol. 2025-8-7

[8]
Ser107Pro links difficulty awakening in the morning to adiposity through circadian regulation of adipose thermogenesis.

bioRxiv. 2025-7-30

[9]
Circulating Proteomics and Risk of Atrial Fibrillation: A Systematic Review of Cohort Studies.

J Cell Mol Med. 2025-8

[10]
Comprehensive Mendelian randomization and colocalization analysis of plasma proteomics to identify new therapeutic targets for bladder cancer.

J Cancer. 2025-7-11

本文引用的文献

[1]
Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses.

PLoS Genet. 2020-4-20

[2]
Genomic atlas of the human plasma proteome.

Nature. 2018-6-6

[3]
A decade of genome-wide association studies for coronary artery disease: the challenges ahead.

Cardiovasc Res. 2018-7-15

[4]
A Bayesian framework for multiple trait colocalization from summary association statistics.

Bioinformatics. 2018-8-1

[5]
Multi-trait analysis of genome-wide association summary statistics using MTAG.

Nat Genet. 2018-1-1

[6]
Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease.

Circ Res. 2017-12-6

[7]
Genetic effects on gene expression across human tissues.

Nature. 2017-10-11

[8]
Prospects of Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from Genome-wide Association Studies.

Am J Hum Genet. 2017-10-5

[9]
Association analyses based on false discovery rate implicate new loci for coronary artery disease.

Nat Genet. 2017-7-17

[10]
Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease.

Nat Genet. 2017-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索