文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

ezQTL:一个用于 QTL 和 GWAS 基因座交互可视化和共定位的网络平台。

ezQTL: A Web Platform for Interactive Visualization and Colocalization of QTLs and GWAS Loci.

机构信息

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.

Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.

出版信息

Genomics Proteomics Bioinformatics. 2022 Jun;20(3):541-548. doi: 10.1016/j.gpb.2022.05.004. Epub 2022 May 25.


DOI:10.1016/j.gpb.2022.05.004
PMID:35643189
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9801033/
Abstract

Genome-wide association studies (GWAS) have identified thousands of genomic loci associated with complex diseases and traits, including cancer. The vast majority of common trait-associated variants identified via GWAS fall in non-coding regions of the genome, posing a challenge in elucidating the causal variants, genes, and mechanisms involved. Expression quantitative trait locus (eQTL) and other molecular QTL studies have been valuable resources in identifying candidate causal genes from GWAS loci through statistical colocalization methods. While QTL colocalization is becoming a standard analysis in post-GWAS investigation, an easy web tool for users to perform formal colocalization analyses with either user-provided or public GWAS and eQTL datasets has been lacking. Here, we present ezQTL, a web-based bioinformatic application to interactively visualize and analyze genetic association data such as GWAS loci and molecular QTLs under different linkage disequilibrium (LD) patterns (1000 Genomes Project, UK Biobank, or user-provided data). This application allows users to perform data quality control for variants matched between different datasets, LD visualization, and two-trait colocalization analyses using two state-of-the-art methodologies (eCAVIAR and HyPrColoc), including batch processing. ezQTL is a free and publicly available cross-platform web tool, which can be accessed online at https://analysistools.cancer.gov/ezqtl.

摘要

全基因组关联研究(GWAS)已经确定了数千个与复杂疾病和特征相关的基因组位点,包括癌症。通过 GWAS 确定的大多数常见性状相关变体都位于基因组的非编码区域,这给阐明涉及的因果变体、基因和机制带来了挑战。表达数量性状基因座(eQTL)和其他分子 QTL 研究一直是通过统计共定位方法从 GWAS 位点识别候选因果基因的有价值的资源。虽然 QTL 共定位在 GWAS 后调查中已成为一种标准分析方法,但用户缺乏一个易于使用的网络工具,用于使用用户提供或公共的 GWAS 和 eQTL 数据集执行正式的共定位分析。在这里,我们介绍了 ezQTL,这是一个基于网络的生物信息学应用程序,可用于在不同连锁不平衡(LD)模式下(1000 基因组计划、英国生物银行或用户提供的数据)交互可视化和分析遗传关联数据,如 GWAS 位点和分子 QTL。该应用程序允许用户对不同数据集之间匹配的变体进行数据质量控制、LD 可视化以及使用两种最先进的方法(eCAVIAR 和 HyPrColoc)进行两性状共定位分析,包括批处理。ezQTL 是一个免费的、公开的跨平台网络工具,可在 https://analysistools.cancer.gov/ezqtl 在线访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3d/9801033/e7e9c5b2412c/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3d/9801033/b7f67e1aae32/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3d/9801033/e7e9c5b2412c/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3d/9801033/b7f67e1aae32/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e3d/9801033/e7e9c5b2412c/gr2.jpg

相似文献

[1]
ezQTL: A Web Platform for Interactive Visualization and Colocalization of QTLs and GWAS Loci.

Genomics Proteomics Bioinformatics. 2022-6

[2]
A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits.

Nat Commun. 2021-2-3

[3]
postGWAS: A web server for deciphering the causality post the genome-wide association studies.

Comput Biol Med. 2024-3

[4]
ColocQuiaL: a QTL-GWAS colocalization pipeline.

Bioinformatics. 2022-9-15

[5]
Estimating colocalization probability from limited summary statistics.

BMC Bioinformatics. 2021-5-17

[6]
RicePilaf: a post-GWAS/QTL dashboard to integrate pangenomic, coexpression, regulatory, epigenomic, ontology, pathway, and text-mining information to provide functional insights into rice QTLs and GWAS loci.

Gigascience. 2024-1-2

[7]
Colocalization of GWAS and eQTL Signals Detects Target Genes.

Am J Hum Genet. 2016-12-1

[8]
LocusFocus: Web-based colocalization for the annotation and functional follow-up of GWAS.

PLoS Comput Biol. 2020-10

[9]
Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution.

Hum Mol Genet. 2019-12-15

[10]
Prioritization of causal genes from genome-wide association studies by Bayesian data integration across loci.

PLoS Comput Biol. 2025-1-7

引用本文的文献

[1]
Protein quantitative trait locus analysis in African American and non-Hispanic White individuals.

Genome Biol. 2025-7-10

[2]
Mapping chromatin interactions at melanoma susceptibility loci uncovers distant cis-regulatory gene targets.

Am J Hum Genet. 2025-5-16

[3]
Sex-differentiated placental methylation and gene expression regulation has implications for neonatal traits and adult diseases.

Nat Commun. 2025-5-1

[4]
Identification and catalog of viral transcriptional regulators in human diseases.

iScience. 2025-2-21

[5]
Genome-wide interaction association analysis identifies interactive effects of childhood maltreatment and kynurenine pathway on depression.

Nat Commun. 2025-2-18

[6]
Mapping chromatin interactions at melanoma susceptibility loci and cell-type specific dataset integration uncovers distant gene targets of -regulation.

medRxiv. 2024-11-15

[7]
A scoping review of statistical methods to investigate colocalization between genetic associations and microRNA expression in osteoarthritis.

Osteoarthr Cartil Open. 2024-11-8

[8]
The goldmine of GWAS summary statistics: a systematic review of methods and tools.

BioData Min. 2024-9-5

[9]
Unveiling Gene Interactions in Alzheimer's Disease by Integrating Genetic and Epigenetic Data with a Network-Based Approach.

Epigenomes. 2024-4-1

[10]
Translatome profiling reveals Itih4 as a novel smooth muscle cell-specific gene in atherosclerosis.

Cardiovasc Res. 2024-7-2

本文引用的文献

[1]
Cell-type-specific meQTLs extend melanoma GWAS annotation beyond eQTLs and inform melanocyte gene-regulatory mechanisms.

Am J Hum Genet. 2021-9-2

[2]
eQTpLot: a user-friendly R package for the visualization of colocalization between eQTL and GWAS signals.

BioData Min. 2021-7-17

[3]
A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits.

Nat Commun. 2021-2-3

[4]
Functionally informed fine-mapping and polygenic localization of complex trait heritability.

Nat Genet. 2020-12

[5]
LocusFocus: Web-based colocalization for the annotation and functional follow-up of GWAS.

PLoS Comput Biol. 2020-10

[6]
The GTEx Consortium atlas of genetic regulatory effects across human tissues.

Science. 2020-9-11

[7]
Massively parallel reporter assays of melanoma risk variants identify MX2 as a gene promoting melanoma.

Nat Commun. 2020-6-1

[8]
The mutational constraint spectrum quantified from variation in 141,456 humans.

Nature. 2020-5-27

[9]
IntAssoPlot: An R Package for Integrated Visualization of Genome-Wide Association Study Results With Gene Structure and Linkage Disequilibrium Matrix.

Front Genet. 2020-3-20

[10]
LDpop: an interactive online tool to calculate and visualize geographic LD patterns.

BMC Bioinformatics. 2020-1-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索