School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
J Phys Chem B. 2021 Feb 25;125(7):1861-1873. doi: 10.1021/acs.jpcb.0c10329. Epub 2021 Feb 4.
A goal in computational chemistry is computing hydration free energies of nonpolar and charged solutes accurately, but with much greater computational speeds than in today's explicit-water simulations. Here, we take one step in that direction: a simple model of solvating waters that is analytical and thus essentially instantaneous to compute. Each water molecule is a 2-dimensional dipolar hydrogen-bonding disk that interacts around small circular solutes with different nonpolar and charge interactions. The model gives good qualitative agreement with experiments. As a function of the solute radius, it gives the solvation free energy, enthalpy and entropy as a function of temperature for the inert gas series Ne, Ar, Kr, and Xe. For anions and cations, it captures relatively well the trends versus ion radius. This approach should be readily generalizable to three dimensions.
计算化学的目标是准确计算非极性和带电溶质的水合自由能,但计算速度要比当今的显式水模拟快得多。在这里,我们朝着这个方向迈出了一步:提出了一种简单的溶剂化水模型,该模型是解析的,因此计算速度非常快。每个水分子都是一个二维偶极氢键圆盘,它与具有不同非极性和电荷相互作用的小圆形溶质相互作用。该模型与实验结果定性一致。作为溶质半径的函数,它给出了惰性气体系列 Ne、Ar、Kr 和 Xe 的溶剂化自由能、焓和熵随温度的变化。对于阴离子和阳离子,它相对较好地捕捉了与离子半径的趋势。这种方法应该很容易推广到三维。