Hribar Barbara, Southall Noel T, Vlachy Vojko, Dill Ken A
Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, 1000 Ljubljana, Slovenia.
J Am Chem Soc. 2002 Oct 16;124(41):12302-11. doi: 10.1021/ja026014h.
We model ion solvation in water. We use the MB model of water, a simple two-dimensional statistical mechanical model in which waters are represented as Lennard-Jones disks having Gaussian hydrogen-bonding arms. We introduce a charge dipole into MB waters. We perform (NPT) Monte Carlo simulations to explore how water molecules are organized around ions and around nonpolar solutes in salt solutions. The model gives good qualitative agreement with experiments, including Jones-Dole viscosity B coefficients, Samoilov and Hirata ion hydration activation energies, ion solvation thermodynamics, and Setschenow coefficients for Hofmeister series ions, which describe the salt concentration dependence of the solubilities of hydrophobic solutes. The two main ideas captured here are (1) that charge densities govern the interactions of ions with water, and (2) that a balance of forces determines water structure: electrostatics (water's dipole interacting with ions) and hydrogen bonding (water interacting with neighboring waters). Small ions (kosmotropes) have high charge densities so they cause strong electrostatic ordering of nearby waters, breaking hydrogen bonds. In contrast, large ions (chaotropes) have low charge densities, and surrounding water molecules are largely hydrogen bonded.
我们对水中的离子溶剂化进行建模。我们使用水的MB模型,这是一个简单的二维统计力学模型,其中水被表示为具有高斯氢键臂的 Lennard-Jones 圆盘。我们将一个电荷偶极子引入到MB水中。我们进行(NPT)蒙特卡罗模拟,以探究盐溶液中水分子围绕离子和非极性溶质是如何排列的。该模型与实验结果在定性上有很好的一致性,包括琼斯-多尔粘度B系数、萨莫伊洛夫和平田离子水合活化能、离子溶剂化热力学以及霍夫迈斯特系列离子的塞申诺夫系数,后者描述了疏水性溶质溶解度对盐浓度的依赖性。这里所体现的两个主要观点是:(1)电荷密度决定离子与水的相互作用;(2)力的平衡决定水的结构:静电作用(水的偶极与离子相互作用)和氢键作用(水与相邻水分子相互作用)。小离子(促溶剂)具有高电荷密度,因此它们会导致附近水分子强烈的静电有序排列,破坏氢键。相比之下,大离子(离液剂)具有低电荷密度,周围水分子主要通过氢键结合。