IEEE Trans Neural Netw Learn Syst. 2022 Aug;33(8):3522-3532. doi: 10.1109/TNNLS.2021.3053263. Epub 2022 Aug 3.
Link prediction (LP) in networks aims at determining future interactions among elements; it is a critical machine-learning tool in different domains, ranging from genomics to social networks to marketing, especially in e-commerce recommender systems. Although many LP techniques have been developed in the prior art, most of them consider only static structures of the underlying networks, rarely incorporating the network's information flow. Exploiting the impact of dynamic streams, such as information diffusion, is still an open research topic for LP. Information diffusion allows nodes to receive information beyond their social circles, which, in turn, can influence the creation of new links. In this work, we analyze the LP effects through two diffusion approaches, susceptible-infected-recovered and independent cascade. As a result, we propose the progressive-diffusion (PD) method for LP based on nodes' propagation dynamics. The proposed model leverages a stochastic discrete-time rumor model centered on each node's propagation dynamics. It presents low-memory and low-processing footprints and is amenable to parallel and distributed processing implementation. Finally, we also introduce an evaluation metric for LP methods considering both the information diffusion capacity and the LP accuracy. Experimental results on a series of benchmarks attest to the proposed method's effectiveness compared with the prior art in both criteria.
网络中的链路预测 (Link Prediction, LP) 旨在确定元素之间的未来交互;它是不同领域(从基因组学到社交网络再到市场营销,特别是电子商务推荐系统)中关键的机器学习工具。尽管已有许多 LP 技术在现有技术中得到了发展,但它们大多只考虑了底层网络的静态结构,很少考虑网络的信息流。利用动态流(如信息扩散)的影响仍然是 LP 的一个开放研究课题。信息扩散允许节点接收超出其社交圈的信息,这反过来又会影响新链接的创建。在这项工作中,我们通过两种扩散方法,即易感染恢复和独立级联,分析 LP 效应。结果,我们提出了基于节点传播动力学的渐进扩散 (Progressive Diffusion, PD) LP 方法。所提出的模型利用了以每个节点的传播动力学为中心的随机离散时间谣言模型。它具有低内存和低处理足迹,适用于并行和分布式处理实现。最后,我们还引入了一种 LP 方法的评估指标,同时考虑信息扩散能力和 LP 准确性。在一系列基准上的实验结果表明,与现有技术相比,该方法在这两个标准上都具有有效性。