Laboratoire d'Informatique de Bourgogne, University of Burgundy, Dijon, France.
PLoS One. 2022 Aug 29;17(8):e0273610. doi: 10.1371/journal.pone.0273610. eCollection 2022.
Quantifying a node's importance is decisive for developing efficient strategies to curb or accelerate any spreading phenomena. Centrality measures are well-known methods used to quantify the influence of nodes by extracting information from the network's structure. The pitfall of these measures is to pinpoint nodes located in the vicinity of each other, saturating their shared zone of influence. In this paper, we propose a ranking strategy exploiting the ubiquity of the community structure in real-world networks. The proposed community-aware ranking strategy naturally selects a set of distant spreaders with the most significant influence in the networks. One can use it with any centrality measure. We investigate its effectiveness using real-world and synthetic networks with controlled parameters in a Susceptible-Infected-Recovered (SIR) diffusion model scenario. Experimental results indicate the superiority of the proposed ranking strategy over all its counterparts agnostic about the community structure. Additionally, results show that it performs better in networks with a strong community structure and a high number of communities of heterogeneous sizes.
量化节点的重要性对于制定有效的策略来遏制或加速任何传播现象至关重要。中心性测度是一种通过从网络结构中提取信息来量化节点影响的常用方法。这些措施的缺陷在于定位彼此附近的节点,使它们共享的影响区域饱和。在本文中,我们提出了一种利用现实网络中社区结构普遍性的排序策略。所提出的社区感知排序策略自然选择了一组具有最大影响力的远离传播者。人们可以使用任何中心性测度。我们使用带有控制参数的真实网络和合成网络,在易感染-恢复(SIR)扩散模型场景中,调查了它的有效性。实验结果表明,与所有对社区结构一无所知的中心性测度相比,所提出的排序策略具有优越性。此外,结果表明,在具有强社区结构和大量异质大小社区的网络中,它的性能更好。