Cuba Samaniego Christian, Franco Elisa
Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA.
Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA; Bioengineering, University of California at Los Angeles, Los Angeles, CA 90095, USA; Mechanical Engineering, University of California at Riverside, Riverside, CA 92521, USA.
Cell Syst. 2021 Mar 17;12(3):272-288.e3. doi: 10.1016/j.cels.2021.01.001. Epub 2021 Feb 3.
Feedback control has enabled the success of automated technologies by mitigating the effects of variability, unknown disturbances, and noise. While it is known that biological feedback loops reduce the impact of noise and help shape kinetic responses, many questions remain about how to design molecular integral controllers. Here, we propose a modular strategy to build molecular quasi-integral feedback controllers, which involves following two design principles. The first principle is to utilize an ultrasensitive response, which determines the gain of the controller and influences the steady-state error. The second is to use a tunable threshold of the ultrasensitive response, which determines the equilibrium point of the system. We describe a reaction network, named brink controller, that satisfies these conditions by combining molecular sequestration and an activation/deactivation cycle. With computational models, we examine potential biological implementations of brink controllers, and we illustrate different example applications.
反馈控制通过减轻变异性、未知干扰和噪声的影响,使自动化技术取得了成功。虽然已知生物反馈回路可降低噪声的影响并有助于塑造动力学响应,但关于如何设计分子积分控制器仍存在许多问题。在此,我们提出了一种构建分子准积分反馈控制器的模块化策略,该策略涉及以下两条设计原则。第一条原则是利用超敏感响应,它决定了控制器的增益并影响稳态误差。第二条原则是使用超敏感响应的可调阈值,它决定了系统的平衡点。我们描述了一个名为边缘控制器的反应网络,它通过结合分子隔离和激活/失活循环来满足这些条件。通过计算模型,我们研究了边缘控制器的潜在生物学实现方式,并举例说明了不同的应用示例。