Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th St., San Francisco, CA 94158, USA.
Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th St., San Francisco, CA 94158, USA.
Cell Syst. 2019 Oct 23;9(4):338-353.e10. doi: 10.1016/j.cels.2019.08.010. Epub 2019 Sep 25.
The capability to engineer de novo feedback control with biological molecules is ushering in an era of robust functionality for many applications in biotechnology and medicine. To fulfill their potential, these control strategies need to be generalizable, modular, and operationally predictable. Proportional-integral-derivative (PID) control fulfills this role for technological systems. Integral feedback control allows a system to return to an invariant steady-state value after step disturbances. Proportional and derivative feedback control used with integral control modulate the dynamics of the return to steady state following perturbation. Recently, a biomolecular implementation of integral control was proposed based on an antithetic motif in which two molecules interact stoichiometrically to annihilate each other's function. In this work, we report how proportional and derivative implementations can be layered on top of this integral architecture to achieve a biochemical PID control design. We investigate computationally and analytically their properties and ability to improve performance.
利用生物分子进行从头设计反馈控制的能力正在为生物技术和医学的许多应用带来强大功能。为了发挥它们的潜力,这些控制策略需要具有通用性、模块化和可操作性预测性。比例积分微分(PID)控制在技术系统中扮演了这个角色。积分反馈控制允许系统在阶跃干扰后返回到不变的稳态值。比例、微分和积分反馈控制结合使用,可以调节系统在受到干扰后返回稳态的动态特性。最近,提出了一种基于反型 motif 的生物分子积分控制的实现方法,其中两个分子以化学计量比相互作用,从而相互消除对方的功能。在这项工作中,我们报告了如何在这个积分架构之上分层实现比例和导数控制,以实现生化 PID 控制设计。我们通过计算和分析研究了它们的特性和提高性能的能力。