Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, United States.
Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, United States.
J Mol Biol. 2021 Apr 16;433(8):166838. doi: 10.1016/j.jmb.2021.166838. Epub 2021 Feb 1.
Phosphatidylinositol-3-kinases (PI3Ks) are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate to generate a key lipid second messenger, phosphatidylinositol 3,4,5-bisphosphate. PI3Kα and PI3Kγ require activation by RAS proteins to stimulate signaling pathways that control cellular growth, differentiation, motility and survival. Intriguingly, RAS binding to PI3K isoforms likely differ, as RAS mutations have been identified that discriminate between PI3Kα and PI3Kγ, consistent with low sequence homology (23%) between their RAS binding domains (RBDs). As disruption of the RAS/PI3Kα interaction reduces tumor growth in mice with RAS- and epidermal growth factor receptor driven skin and lung cancers, compounds that interfere with this key interaction may prove useful as anti-cancer agents. However, a structure of PI3Kα bound to RAS is lacking, limiting drug discovery efforts. Expression of full-length PI3K isoforms in insect cells has resulted in low yield and variable activity, limiting biophysical and structural studies of RAS/PI3K interactions. This led us to generate the first RBDs from PI3Kα and PI3Kγ that can be expressed at high yield in bacteria and bind to RAS with similar affinity to full-length PI3K. We also solved a 2.31 Å X-ray crystal structure of the PI3Kα-RBD, which aligns well to full-length PI3Kα. Structural differences between the PI3Kα and PI3Kγ RBDs are consistent with differences in thermal stability and may underly differential RAS recognition and RAS-mediated PI3K activation. These high expression, functional PI3K RBDs will aid in interrogating RAS interactions and could aid in identifying inhibitors of this key interaction.
磷脂酰肌醇-3-激酶(PI3Ks)是一种脂质激酶,可将磷脂酰肌醇 4,5-二磷酸磷酸化为关键的脂质第二信使,磷脂酰肌醇 3,4,5-三磷酸。PI3Kα 和 PI3Kγ 需要 RAS 蛋白的激活来刺激控制细胞生长、分化、运动和存活的信号通路。有趣的是,RAS 与不同的 PI3K 同工型结合的方式可能不同,因为已经鉴定出 RAS 突变可以区分 PI3Kα 和 PI3Kγ,这与它们的 RAS 结合域(RBD)之间的低序列同源性(23%)一致。由于破坏 RAS/PI3Kα 相互作用可减少由 RAS 和表皮生长因子受体驱动的皮肤和肺癌小鼠中的肿瘤生长,因此干扰这种关键相互作用的化合物可能被证明是有用的抗癌剂。然而,缺乏 PI3Kα 与 RAS 结合的结构,限制了药物发现的努力。在昆虫细胞中表达全长 PI3K 同工型会导致产量低且活性变化,限制了 RAS/PI3K 相互作用的生物物理和结构研究。这导致我们生成了第一个可以在细菌中高产量表达并与全长 PI3K 具有相似亲和力结合 RAS 的 PI3Kα 和 PI3Kγ 的 RBD。我们还解决了 2.31Å X 射线晶体结构的 PI3Kα-RBD,它与全长 PI3Kα 很好地对齐。PI3Kα 和 PI3Kγ RBD 之间的结构差异与热稳定性的差异一致,可能是由于 RAS 识别和 RAS 介导的 PI3K 激活的差异。这些高表达、功能齐全的 PI3K RBD 将有助于研究 RAS 相互作用,并有助于识别这种关键相互作用的抑制剂。