Suppr超能文献

在时空中学单词:可疑巧合效应的对比模型。

Learning words in space and time: Contrasting models of the suspicious coincidence effect.

机构信息

Department of Psychological and Brain Sciences, University of Iowa, USA.

School of Psychology, University of East Anglia, UK.

出版信息

Cognition. 2021 May;210:104576. doi: 10.1016/j.cognition.2020.104576. Epub 2021 Feb 1.

Abstract

In their 2007b Psychological Review paper, Xu and Tenenbaum found that early word learning follows the classic logic of the "suspicious coincidence effect:" when presented with a novel name ('fep') and three identical exemplars (three Labradors), word learners generalized novel names more narrowly than when presented with a single exemplar (one Labrador). Xu and Tenenbaum predicted the suspicious coincidence effect based on a Bayesian model of word learning and demonstrated that no other theory captured this effect. Recent empirical studies have revealed, however, that the effect is influenced by factors seemingly outside the purview of the Bayesian account. A process-based perspective correctly predicted that when exemplars are shown sequentially, the effect is eliminated or reversed (Spencer, Perone, Smith, & Samuelson, 2011). Here, we present a new, formal account of the suspicious coincidence effect using a generalization of a Dynamic Neural Field (DNF) model of word learning. The DNF model captures both the original finding and its reversal with sequential presentation. We compare the DNF model's performance with that of a more flexible version of the Bayesian model that allows both strong and weak sampling assumptions. Model comparison results show that the dynamic field account provides a better fit to the empirical data. We discuss the implications of the DNF model with respect to broader contrasts between Bayesian and process-level models.

摘要

在他们 2007b 年的《心理学评论》论文中,徐和特南鲍姆发现,早期的单词学习遵循经典的“可疑巧合效应”逻辑:当呈现一个新的名称('fep')和三个相同的示例(三只拉布拉多犬)时,单词学习者比呈现单个示例(一只拉布拉多犬)时更狭隘地泛化新名称。徐和特南鲍姆基于单词学习的贝叶斯模型预测了可疑巧合效应,并证明没有其他理论可以捕捉到这种效应。然而,最近的实证研究表明,该效应受到似乎超出贝叶斯解释范围的因素的影响。基于过程的视角正确地预测到,当示例按顺序呈现时,该效应会消除或反转(Spencer、Perone、Smith 和 Samuelson,2011)。在这里,我们使用单词学习的动态神经场 (DNF) 模型的扩展,提出了可疑巧合效应的新形式化解释。DNF 模型同时捕捉到了原始发现及其与顺序呈现的反转。我们将 DNF 模型的性能与允许强和弱抽样假设的贝叶斯模型的更灵活版本进行比较。模型比较结果表明,动态场解释提供了对经验数据更好的拟合。我们讨论了 DNF 模型相对于贝叶斯和基于过程的模型之间更广泛对比的含义。

相似文献

4
Still Suspicious: The Suspicious-Coincidence Effect Revisited.仍存疑虑:再探可疑巧合效应
Psychol Sci. 2018 Oct 15:956797618794931. doi: 10.1177/0956797618794931.
6
Sensitivity to sampling in Bayesian word learning.贝叶斯单词学习中的抽样敏感性。
Dev Sci. 2007 May;10(3):288-97. doi: 10.1111/j.1467-7687.2007.00590.x.
7
Word learning as Bayesian inference.作为贝叶斯推理的词汇学习
Psychol Rev. 2007 Apr;114(2):245-72. doi: 10.1037/0033-295X.114.2.245.

引用本文的文献

1
Word learning as category formation.作为范畴形成的词汇学习。
PLoS One. 2025 Jul 3;20(7):e0327615. doi: 10.1371/journal.pone.0327615. eCollection 2025.

本文引用的文献

1
Bayesian collective learning emerges from heuristic social learning.贝叶斯集体学习源自启发式社会学习。
Cognition. 2021 Jul;212:104469. doi: 10.1016/j.cognition.2020.104469. Epub 2021 Mar 24.
2
How Do Expectations Shape Perception?期望如何塑造感知?
Trends Cogn Sci. 2018 Sep;22(9):764-779. doi: 10.1016/j.tics.2018.06.002. Epub 2018 Jun 29.
3
Active Inference: A Process Theory.主动推理:一种过程理论。
Neural Comput. 2017 Jan;29(1):1-49. doi: 10.1162/NECO_a_00912. Epub 2016 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验