Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea.
Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Korea.
Sensors (Basel). 2021 Feb 2;21(3):1013. doi: 10.3390/s21031013.
RGB-D cameras have been commercialized, and many applications using them have been proposed. In this paper, we propose a robust registration method of multiple RGB-D cameras. We use a human body tracking system provided by Azure Kinect SDK to estimate a coarse global registration between cameras. As this coarse global registration has some error, we refine it using feature matching. However, the matched feature pairs include mismatches, hindering good performance. Therefore, we propose a registration refinement procedure that removes these mismatches and uses the global registration. In an experiment, the ratio of inliers among the matched features is greater than 95% for all tested feature matchers. Thus, we experimentally confirm that mismatches can be eliminated via the proposed method even in difficult situations and that a more precise global registration of RGB-D cameras can be obtained.
RGB-D 相机已经商业化,并且已经提出了许多使用它们的应用。在本文中,我们提出了一种用于多台 RGB-D 相机的鲁棒配准方法。我们使用 Azure Kinect SDK 提供的人体跟踪系统来估计相机之间的粗略全局配准。由于此粗略全局配准存在一些误差,因此我们使用特征匹配对其进行细化。但是,匹配的特征对包括不匹配,从而影响性能。因此,我们提出了一种注册细化过程,该过程可以消除这些不匹配并使用全局注册。在实验中,对于所有测试的特征匹配器,匹配特征中的内点比例均大于 95%。因此,我们通过实验证实,即使在困难的情况下,也可以通过所提出的方法消除不匹配,并且可以获得更精确的 RGB-D 相机全局配准。