Suppr超能文献

利用全国性商业健康计划研究网络中的行政索赔数据对减肥手术及其结果进行特征分析。

Characterization of bariatric surgery and outcomes using administrative claims data in the research network of a nationwide commercial health plan.

作者信息

Ma Qinli, Mack Michael, Shambhu Sonali, McTigue Kathleen, Haynes Kevin

机构信息

Translational Research for Affordability and Quality, HealthCore, Inc, Wilmington, DE, USA.

Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

BMC Health Serv Res. 2021 Feb 4;21(1):116. doi: 10.1186/s12913-021-06074-3.

Abstract

BACKGROUND

The supplementation of electronic health records data with administrative claims data may be used to capture outcome events more comprehensively in longitudinal observational studies. This study investigated the utility of administrative claims data to identify outcomes across health systems using a comparative effectiveness study of different types of bariatric surgery as a model.

METHODS

This observational cohort study identified patients who had bariatric surgery between 2007 and 2015 within the HealthCore Anthem Research Network (HCARN) database in the National Patient-Centered Clinical Research Network (PCORnet) common data model. Patients whose procedures were performed in a member facility affiliated with PCORnet Clinical Research Networks (CRNs) were selected. The outcomes included a 30-day composite adverse event (including venous thromboembolism, percutaneous/operative intervention, failure to discharge and death), and all-cause hospitalization, abdominal operation or intervention, and in-hospital death up to 5 years after the procedure. Outcomes were classified as occurring within or outside PCORnet CRN health systems using facility identifiers.

RESULTS

We identified 4899 patients who had bariatric surgery in one of the PCORnet CRN health systems. For 30-day composite adverse event, the inclusion of HCARN multi-site claims data marginally increased the incidence rate based only on HCARN single-site claims data for PCORnet CRNs from 3.9 to 4.2%. During the 5-year follow-up period, 56.8% of all-cause hospitalizations, 31.2% abdominal operations or interventions, and 32.3% of in-hospital deaths occurred outside PCORnet CRNs. Incidence rates (events per 100 patient-years) were significantly lower when based on claims from a single PCORnet CRN only compared to using claims from all health systems in the HCARN: all-cause hospitalization, 11.0 (95% Confidence Internal [CI]: 10.4, 11.6) to 25.3 (95% CI: 24.4, 26.3); abdominal operations or interventions, 4.2 (95% CI: 3.9, 4.6) to 6.1 (95% CI: 5.7, 6.6); in-hospital death, 0.2 (95% CI: 0.11, 0.27) to 0.3 (95% CI: 0.19, 0.38).

CONCLUSIONS

Short-term inclusion of multi-site claims data only marginally increased the incidence rate computed from single-site claims data alone. Longer-term follow up captured a notable number of events outside of PCORnet CRNs. The findings suggest that supplementing claims data improves the outcome ascertainment in longitudinal observational comparative effectiveness studies.

摘要

背景

在纵向观察性研究中,用行政索赔数据补充电子健康记录数据可更全面地捕捉结局事件。本研究以不同类型减肥手术的比较效果研究为模型,调查行政索赔数据在跨卫生系统识别结局方面的效用。

方法

这项观察性队列研究在国家以患者为中心的临床研究网络(PCORnet)通用数据模型中的HealthCore Anthem研究网络(HCARN)数据库中,识别出2007年至2015年间接受减肥手术的患者。选择在与PCORnet临床研究网络(CRNs)相关的成员机构中接受手术的患者。结局包括30天综合不良事件(包括静脉血栓栓塞、经皮/手术干预、未出院和死亡),以及术后5年内的全因住院、腹部手术或干预和院内死亡。使用机构标识符将结局分类为发生在PCORnet CRN卫生系统内或外。

结果

我们识别出4899名在PCORnet CRN卫生系统之一接受减肥手术的患者。对于30天综合不良事件,纳入HCARN多地点索赔数据仅使基于PCORnet CRNs的HCARN单地点索赔数据计算的发病率从3.9%略微提高到4.2%。在5年随访期内,56.8%的全因住院、31.2%的腹部手术或干预以及32.3%的院内死亡发生在PCORnet CRNs之外。与仅使用HCARN中所有卫生系统的索赔相比,仅基于单个PCORnet CRN的索赔计算的发病率(每100患者年的事件数)显著更低:全因住院,从11.0(95%置信区间[CI]:10.4,11.6)降至25.3(95%CI:24.4,26.3);腹部手术或干预,从4.2(95%CI:3.9,4.6)降至6.1(95%CI:5.7,6.6);院内死亡,从0.2(95%CI:0.11,0.27)降至0.3(95%CI:0.19,0.38)。

结论

短期纳入多地点索赔数据仅略微提高了仅根据单地点索赔数据计算的发病率。长期随访发现PCORnet CRNs之外有相当数量的事件。研究结果表明,补充索赔数据可改善纵向观察性比较效果研究中的结局确定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12c3/7860025/5c714b51c1ad/12913_2021_6074_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验