Suppr超能文献

面向临床研究网络的隐私保护队列发现框架

Towards a privacy preserving cohort discovery framework for clinical research networks.

作者信息

Yuan Jiawei, Malin Bradley, Modave François, Guo Yi, Hogan William R, Shenkman Elizabeth, Bian Jiang

机构信息

Department of Electrical, Computer, Software, & Systems Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL, United States.

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States.

出版信息

J Biomed Inform. 2017 Feb;66:42-51. doi: 10.1016/j.jbi.2016.12.008. Epub 2016 Dec 19.

Abstract

BACKGROUND

The last few years have witnessed an increasing number of clinical research networks (CRNs) focused on building large collections of data from electronic health records (EHRs), claims, and patient-reported outcomes (PROs). Many of these CRNs provide a service for the discovery of research cohorts with various health conditions, which is especially useful for rare diseases. Supporting patient privacy can enhance the scalability and efficiency of such processes; however, current practice mainly relies on policy, such as guidelines defined in the Health Insurance Portability and Accountability Act (HIPAA), which are insufficient for CRNs (e.g., HIPAA does not require encryption of data - which can mitigate insider threats). By combining policy with privacy enhancing technologies we can enhance the trustworthiness of CRNs. The goal of this research is to determine if searchable encryption can instill privacy in CRNs without sacrificing their usability.

METHODS

We developed a technique, implemented in working software to enable privacy-preserving cohort discovery (PPCD) services in large distributed CRNs based on elliptic curve cryptography (ECC). This technique also incorporates a block indexing strategy to improve the performance (in terms of computational running time) of PPCD. We evaluated the PPCD service with three real cohort definitions: (1) elderly cervical cancer patients who underwent radical hysterectomy, (2) oropharyngeal and tongue cancer patients who underwent robotic transoral surgery, and (3) female breast cancer patients who underwent mastectomy) with varied query complexity. These definitions were tested in an encrypted database of 7.1 million records derived from the publically available Healthcare Cost and Utilization Project (HCUP) Nationwide Inpatient Sample (NIS). We assessed the performance of the PPCD service in terms of (1) accuracy in cohort discovery, (2) computational running time, and (3) privacy afforded to the underlying records during PPCD.

RESULTS

The empirical results indicate that the proposed PPCD can execute cohort discovery queries in a reasonable amount of time, with query runtime in the range of 165-262s for the 3 use cases, with zero compromise in accuracy. We further show that the search performance is practical because it supports a highly parallelized design for secure evaluation over encrypted records. Additionally, our security analysis shows that the proposed construction is resilient to standard adversaries.

CONCLUSIONS

PPCD services can be designed for clinical research networks. The security construction presented in this work specifically achieves high privacy guarantees by preventing both threats originating from within and beyond the network.

摘要

背景

在过去几年中,越来越多的临床研究网络(CRN)专注于从电子健康记录(EHR)、理赔数据和患者报告结局(PRO)中构建大量数据集。这些CRN中有许多提供了一项服务,用于发现患有各种健康状况的研究队列,这对罕见病尤为有用。支持患者隐私可以提高此类流程的可扩展性和效率;然而,当前的做法主要依赖于政策,例如《健康保险流通与责任法案》(HIPAA)中定义的准则,但这些准则对于CRN来说并不充分(例如,HIPAA不要求对数据进行加密——而加密可以减轻内部人员威胁)。通过将政策与隐私增强技术相结合,我们可以提高CRN的可信度。本研究的目的是确定可搜索加密能否在不牺牲CRN可用性的情况下为其注入隐私。

方法

我们开发了一种技术,并在工作软件中实现,以基于椭圆曲线密码学(ECC)在大型分布式CRN中实现隐私保护队列发现(PPCD)服务。该技术还采用了块索引策略来提高PPCD的性能(就计算运行时间而言)。我们使用三个实际队列定义对PPCD服务进行了评估:(1)接受根治性子宫切除术的老年宫颈癌患者,(2)接受机器人经口手术的口咽和舌癌患者,以及(3)接受乳房切除术的女性乳腺癌患者,查询复杂度各不相同。这些定义在一个包含710万条记录的加密数据库中进行了测试,该数据库来自公开可用的医疗成本和利用项目(HCUP)全国住院患者样本(NIS)。我们从以下几个方面评估了PPCD服务的性能:(1)队列发现的准确性,(2)计算运行时间,以及(3)在PPCD过程中为基础记录提供的隐私保护。

结果

实证结果表明,所提出的PPCD能够在合理的时间内执行队列发现查询,对于这3个用例,查询运行时间在165 - 262秒范围内,准确性没有任何折损。我们进一步表明,搜索性能是切实可行的,因为它支持对加密记录进行安全评估的高度并行化设计。此外,我们的安全分析表明,所提出的架构能够抵御标准对手的攻击。

结论

可以为临床研究网络设计PPCD服务。本工作中提出的安全架构通过防范源自网络内部和外部的威胁,特别实现了高度的隐私保护保证。

相似文献

2
Secure count query on encrypted genomic data.加密基因组数据上的安全计数查询。
J Biomed Inform. 2018 May;81:41-52. doi: 10.1016/j.jbi.2018.03.003. Epub 2018 Mar 15.
5
PPCD: Privacy-preserving clinical decision with cloud support.PPCD:带云支持的隐私保护临床决策。
PLoS One. 2019 May 29;14(5):e0217349. doi: 10.1371/journal.pone.0217349. eCollection 2019.

引用本文的文献

5
Privacy Policy and Technology in Biomedical Data Science.生物医学数据科学中的隐私政策与技术
Annu Rev Biomed Data Sci. 2018 Jul;1:115-129. doi: 10.1146/annurev-biodatasci-080917-013416.
6
Between Access and Privacy: Challenges in Sharing Health Data.在获取与隐私之间:共享健康数据面临的挑战
Yearb Med Inform. 2018 Aug;27(1):55-59. doi: 10.1055/s-0038-1641216. Epub 2018 Aug 29.
8
Are My EHRs Private Enough? Event-Level Privacy Protection.我的电子健康记录隐私保护足够吗?事件级隐私保护。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):103-112. doi: 10.1109/TCBB.2018.2850037. Epub 2018 Jun 25.

本文引用的文献

6
PCORnet: turning a dream into reality.PCORnet:将梦想变为现实。
J Am Med Inform Assoc. 2014 Jul-Aug;21(4):576-7. doi: 10.1136/amiajnl-2014-002864. Epub 2014 May 12.
7
Launching PCORnet, a national patient-centered clinical research network.启动 PCORnet,一个全国性的以患者为中心的临床研究网络。
J Am Med Inform Assoc. 2014 Jul-Aug;21(4):578-82. doi: 10.1136/amiajnl-2014-002747. Epub 2014 May 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验