Department of Materials Science, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand; Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Department of Materials Science, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand.
Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN), Department of Materials Science, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand.
Carbohydr Polym. 2021 Apr 1;257:117610. doi: 10.1016/j.carbpol.2020.117610. Epub 2021 Jan 5.
Chitosan nanoparticles (CSNPs) based on their different derivatives were proposed as antioxidant and antimicrobial additives for active bioplastic packaging. Chitosan was modified with polyethylene glycol methyl ether methacrylate (PEGMA), stearyl methacrylate (SMA) and deoxycholic acid (DC) using radiation-induced graft polymerization and chemical conjugation. The modified CSNPs-g-pPEGMA, CSNPs-g-pSMA and CSNPs-DC self-assembled into nanoparticles with the size in the range of 25-60 nm. The CSNPs-DC derivative has superior antioxidant activity and the CSNPs-g-pSMA derivative exhibited outstanding antibacterial activity against growth of E.coli (95.33 %). All modified CSNPs showed their capacities to inhibit S.aureus bacterial growth (>98 %). PLA packaging films containing CSNPs-g-pSMA inhibited the growth of natural microorganism on bread slices. Different chemical functions of the CSNPs derivatives provided different gas permeability and mechanical properties of the PLA films. The CSNPs derivatives would be promising antioxidant and antimicrobial additives for bioplastics to be further used as bio-based active food packaging.
壳聚糖纳米粒子(CSNPs)基于其不同的衍生物,被提议作为抗氧化剂和抗菌添加剂用于活性生物塑料包装。壳聚糖通过辐射诱导接枝聚合和化学偶联,分别用聚乙二醇甲基醚甲基丙烯酸酯(PEGMA)、硬脂基甲基丙烯酸酯(SMA)和脱氧胆酸(DC)进行修饰。修饰后的 CSNPs-g-pPEGMA、CSNPs-g-pSMA 和 CSNPs-DC 自组装成纳米粒子,粒径在 25-60nm 范围内。CSNPs-DC 衍生物具有优异的抗氧化活性,CSNPs-g-pSMA 衍生物对大肠杆菌的生长表现出出色的抗菌活性(95.33%)。所有修饰的 CSNPs 均表现出抑制金黄色葡萄球菌细菌生长的能力(>98%)。含有 CSNPs-g-pSMA 的 PLA 包装薄膜抑制了面包片上天然微生物的生长。CSNPs 衍生物的不同化学功能为 PLA 薄膜提供了不同的气体渗透性和机械性能。CSNPs 衍生物有望成为生物塑料的抗氧化剂和抗菌添加剂,进一步用作基于生物的活性食品包装。