Li Jingbai, Stein Rachel, Lopez Steven A
Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston Massachusetts 02115, United States.
J Org Chem. 2021 Mar 5;86(5):4061-4070. doi: 10.1021/acs.joc.0c02905. Epub 2021 Feb 5.
Photochemical reactions exemplify "green" chemistry and are an essential tool for synthesizing highly strained molecules under mild conditions with light. The light-promoted denitrogenation of bicyclic azoalkanes affords functionalized, stereoenriched bicyclo[1.1.0]butanes. These reactions were revisited with multireference calculations and non-adiabatic molecular dynamics (NAMD) simulations to provide a detailed analysis of the photophysics, reactivities, and unexplained stereoselectivity of a series of diazabicyclo[2.1.1]hexenes. We used complete active space self-consistent field (CASSCF) calculations with an (8,8) active space and ANO-S-VDZP basis set; the CASSCF energies were corrected with CASPT2 (8,8)/ANO-S-VDZP. The nature of the electronic excitation is n → π* and ranges from 3.77 to 3.91 eV for the diazabicyclo[2.1.1]hexenes reported here. Minimum energy path calculations showed stepwise C-N bond breaking and led directly to a minimum energy crossing point, corresponding to a stereochemical "double inversion" product. Wigner sampling of provided initial conditions for 692 NAMD trajectories. We identified competing complete stereoselective and stereochemical scrambling pathways. The stereoselective pathways feature concerted bicyclobutane inversion and N extrusion. The stereochemical scrambling pathways involve N extrusion followed by bicyclobutane planarization, leading to stereochemical scrambling. The predicted diastereomeric excess () almost exactly matches the experiment (calc = 46% vs exp = 47%). Our NAMD simulations with 672, 568, and 596 trajectories for , , and predicted a of 94-97% for the double inversion products. Halogenation significantly perturbs the potential energy surface (PES) toward the retention products due to hyperconjugative interactions. The n → σ* hyperconjugative effect leads to a broader shoulder region on the PES for double inversion.
光化学反应是“绿色”化学的典范,是在温和条件下利用光合成高张力分子的重要工具。双环偶氮烷烃的光促进脱氮反应可得到功能化的、立体富集的双环[1.1.0]丁烷。通过多参考计算和非绝热分子动力学(NAMD)模拟重新研究了这些反应,以详细分析一系列二氮杂双环[2.1.1]己烯的光物理性质、反应活性和无法解释的立体选择性。我们使用具有(8,8)活性空间和ANO-S-VDZP基组的完全活性空间自洽场(CASSCF)计算;CASSCF能量用CASPT2(8,8)/ANO-S-VDZP进行校正。电子激发的性质为n→π*,本文报道的二氮杂双环[2.1.1]己烯的激发能范围为3.77至3.91 eV。最小能量路径计算表明C-N键逐步断裂,并直接导致一个最小能量交叉点,对应于一个立体化学“双反转”产物。对 的维格纳抽样为692条NAMD轨迹提供了初始条件。我们确定了相互竞争的完全立体选择性和立体化学混乱途径。立体选择性途径的特征是协同双环丁烷反转和N挤出。立体化学混乱途径涉及N挤出,然后是双环丁烷平面化,导致立体化学混乱。预测的非对映体过量( )几乎与实验完全匹配(计算值 = 46%,实验值 = 47%)。我们对 、 和 分别进行了672、568和596条轨迹的NAMD模拟,预测双反转产物的 为94 - 97%。由于超共轭相互作用,卤化作用显著地使势能面(PES)向保留产物方向扰动。n→σ*超共轭效应导致双反转的PES上出现更宽的肩部区域。