Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States.
J Am Chem Soc. 2021 Dec 8;143(48):20166-20175. doi: 10.1021/jacs.1c07725. Epub 2021 Nov 17.
Photochemical [2 + 2]-cycloadditions store solar energy in chemical bonds and efficiently access strained organic molecular architectures. Functionalized [3]-ladderdienes undergo [2 + 2]-photocycloadditions to afford cubanes, a class of strained organic molecules. The substituents (e.g., methyl, trifluoromethyl, and cyclopropyl) affect the overall reactivities of these cubane precursors; the yields range from 1 to 48%. However, the origin of these substituent effects on the reactivities and chemoselectivities is not understood. We now integrate single and multireference calculations and machine-learning-accelerated nonadiabatic molecular dynamics (ML-NAMD) to understand how substituents affect the ultrafast dynamics and mechanism of [2 + 2]-photocycloadditions. Steric clashes between substituent groups destabilize the 4π-electrocyclic ring-opening pathway and minimum energy conical intersections by 0.72-1.15 eV and reaction energies by 0.68-2.34 eV. Noncovalent dispersive interactions stabilize the [2 + 2]-photocycloaddition pathway; the conical intersection energies are lower by 0.31-0.85 eV, and the reaction energies are lower by 0.03-0.82 eV. The 2 ps ML-NAMD trajectories reveal that closed-shell repulsions block a 6π-conrotatory electrocyclic ring-opening pathway with increasing steric bulk. Thirty-eight percent of the methyl-substituted [3]-ladderdiene trajectories proceed through the 6π-conrotatory electrocyclic ring-opening, whereas the trifluoromethyl- and cyclopropyl-substituted [3]-ladderdienes prefer the [2 + 2]-photocycloaddition pathways. The predicted cubane yields (H: 0.4% < CH: 1% < CF: 14% < cPr: 15%) match the experimental trend; these substituents predistort the reactants to resemble the conical intersection geometries leading to cubanes.
光化学[2+2]-环加成将太阳能储存在化学键中,并有效地获得应变有机分子结构。功能化[3]-梯烯通过[2+2]-光环加成得到立方烷,这是一类应变有机分子。取代基(例如甲基、三氟甲基和环丙基)影响这些立方烷前体的整体反应性;产率范围为 1%至 48%。然而,这些取代基对反应性和化学选择性的影响的起源尚不清楚。我们现在整合单重和多参考计算和机器学习加速的非绝热分子动力学(ML-NAMD)来理解取代基如何影响[2+2]-光环加成的超快动力学和机制。取代基基团之间的空间位阻使 4π-电环化开环途径和最低能量的锥形交叉点不稳定,降低了 0.72-1.15 eV,反应能降低了 0.68-2.34 eV。非共价分散相互作用稳定[2+2]-光环加成途径;锥形交叉点能量降低了 0.31-0.85 eV,反应能降低了 0.03-0.82 eV。2 ps ML-NAMD 轨迹表明,随着空间位阻的增加,闭壳排斥阻止了 6π-共旋转电环化开环途径。38%的甲基取代[3]-梯烯轨迹通过 6π-共旋转电环化开环,而三氟甲基和环丙基取代[3]-梯烯更喜欢[2+2]-光环加成途径。预测的立方烷产率(H:0.4%<CH:1%<CF:14%<cPr:15%)与实验趋势相符;这些取代基使反应物预变形,类似于导致立方烷的锥形交叉点几何形状。