Suppr超能文献

人工智能、机器学习和癌症药物再利用。

Artificial intelligence, machine learning, and drug repurposing in cancer.

机构信息

Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLife, University of Helsinki, Helsinki, Finland.

Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway.

出版信息

Expert Opin Drug Discov. 2021 Sep;16(9):977-989. doi: 10.1080/17460441.2021.1883585. Epub 2021 Feb 12.

Abstract

: Drug repurposing provides a cost-effective strategy to re-use approved drugs for new medical indications. Several machine learning (ML) and artificial intelligence (AI) approaches have been developed for systematic identification of drug repurposing leads based on big data resources, hence further accelerating and de-risking the drug development process by computational means.: The authors focus on supervised ML and AI methods that make use of publicly available databases and information resources. While most of the example applications are in the field of anticancer drug therapies, the methods and resources reviewed are widely applicable also to other indications including COVID-19 treatment. A particular emphasis is placed on the use of comprehensive target activity profiles that enable a systematic repurposing process by extending the target profile of drugs to include potent off-targets with therapeutic potential for a new indication.: The scarcity of clinical patient data and the current focus on genetic aberrations as primary drug targets may limit the performance of anticancer drug repurposing approaches that rely solely on genomics-based information. Functional testing of cancer patient cells exposed to a large number of targeted therapies and their combinations provides an additional source of repurposing information for tissue-aware AI approaches.

摘要

药物再利用为重新利用已批准的药物用于新的医疗适应症提供了一种具有成本效益的策略。已经开发了几种机器学习 (ML) 和人工智能 (AI) 方法,用于基于大数据资源系统地识别药物再利用线索,从而通过计算手段进一步加速和降低药物开发过程的风险。

作者专注于使用公共可用数据库和信息资源的有监督 ML 和 AI 方法。虽然大多数示例应用都在抗癌药物治疗领域,但所审查的方法和资源也广泛适用于其他适应症,包括 COVID-19 治疗。特别强调使用全面的靶标活性谱,通过将药物的靶标谱扩展到包括具有新适应症治疗潜力的强效非靶标,从而实现系统的再利用过程。

临床患者数据的稀缺性以及当前将遗传异常作为主要药物靶点的关注可能限制仅依赖基于基因组学的信息的抗癌药物再利用方法的性能。对大量靶向治疗及其组合暴露的癌症患者细胞进行功能测试,为基于组织的 AI 方法提供了额外的再利用信息来源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验