Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
Prog Mol Biol Transl Sci. 2024;205:171-211. doi: 10.1016/bs.pmbts.2024.03.030. Epub 2024 Mar 31.
The purpose of drug repurposing is to leverage previously approved drugs for a particular disease indication and apply them to another disease. It can be seen as a faster and more cost-effective approach to drug discovery and a powerful tool for achieving precision medicine. In addition, drug repurposing can be used to identify therapeutic candidates for rare diseases and phenotypic conditions with limited information on disease biology. Machine learning and artificial intelligence (AI) methodologies have enabled the construction of effective, data-driven repurposing pipelines by integrating and analyzing large-scale biomedical data. Recent technological advances, especially in heterogeneous network mining and natural language processing, have opened up exciting new opportunities and analytical strategies for drug repurposing. In this review, we first introduce the challenges in repurposing approaches and highlight some success stories, including those during the COVID-19 pandemic. Next, we review some existing computational frameworks in the literature, organized on the basis of the type of biomedical input data analyzed and the computational algorithms involved. In conclusion, we outline some exciting new directions that drug repurposing research may take, as pioneered by the generative AI revolution.
药物重定位的目的是利用针对特定疾病适应症的已批准药物,并将其应用于另一种疾病。它可以被视为一种更快、更具成本效益的药物发现方法,也是实现精准医学的有力工具。此外,药物重定位可用于为罕见疾病和表型病症确定治疗候选药物,这些病症的疾病生物学信息有限。机器学习和人工智能 (AI) 方法通过整合和分析大规模的生物医学数据,实现了有效的、数据驱动的重定位管道的构建。最近的技术进步,特别是在异构网络挖掘和自然语言处理方面,为药物重定位开辟了令人兴奋的新机会和分析策略。在这篇综述中,我们首先介绍了重定位方法面临的挑战,并重点介绍了一些成功案例,包括在 COVID-19 大流行期间的案例。接下来,我们回顾了文献中一些现有的计算框架,这些框架是根据分析的生物医学输入数据的类型和涉及的计算算法组织的。最后,我们概述了药物重定位研究可能采取的一些令人兴奋的新方向,这些方向是由生成式 AI 革命开创的。