Suppr超能文献

特征向量延拓的收敛性

Convergence of Eigenvector Continuation.

作者信息

Sarkar Avik, Lee Dean

机构信息

Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA.

出版信息

Phys Rev Lett. 2021 Jan 22;126(3):032501. doi: 10.1103/PhysRevLett.126.032501.

Abstract

Eigenvector continuation is a computational method that finds the extremal eigenvalues and eigenvectors of a Hamiltonian matrix with one or more control parameters. It does this by projection onto a subspace of eigenvectors corresponding to selected training values of the control parameters. The method has proven to be very efficient and accurate for interpolating and extrapolating eigenvectors. However, almost nothing is known about how the method converges, and its rapid convergence properties have remained mysterious. In this Letter, we present the first study of the convergence of eigenvector continuation. In order to perform the mathematical analysis, we introduce a new variant of eigenvector continuation that we call vector continuation. We first prove that eigenvector continuation and vector continuation have identical convergence properties and then analyze the convergence of vector continuation. Our analysis shows that, in general, eigenvector continuation converges more rapidly than perturbation theory. The faster convergence is achieved by eliminating a phenomenon that we call differential folding, the interference between nonorthogonal vectors appearing at different orders in perturbation theory. From our analysis we can predict how eigenvector continuation converges both inside and outside the radius of convergence of perturbation theory. While eigenvector continuation is a nonperturbative method, we show that its rate of convergence can be deduced from power series expansions of the eigenvectors. Our results also yield new insights into the nature of divergences in perturbation theory.

摘要

本征向量延拓是一种计算方法,用于找到具有一个或多个控制参数的哈密顿矩阵的极值本征值和本征向量。它通过投影到与控制参数的选定训练值相对应的本征向量子空间来实现这一点。该方法已被证明在本征向量的插值和外推方面非常有效且准确。然而,对于该方法如何收敛几乎一无所知,其快速收敛特性一直很神秘。在这篇快报中,我们首次对本征向量延拓的收敛性进行了研究。为了进行数学分析,我们引入了一种本征向量延拓的新变体,我们称之为向量延拓。我们首先证明本征向量延拓和向量延拓具有相同的收敛特性,然后分析向量延拓的收敛性。我们的分析表明,一般来说,本征向量延拓比微扰理论收敛得更快。通过消除一种我们称为微分折叠的现象,即在微扰理论中不同阶出现的非正交向量之间的干扰,实现了更快的收敛。从我们的分析中,我们可以预测本征向量延拓在微扰理论收敛半径内外的收敛方式。虽然本征向量延拓是一种非微扰方法,但我们表明其收敛速度可以从本征向量的幂级数展开中推导出来。我们的结果还对微扰理论中的发散性质产生了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验