Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC), Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.
J Am Chem Soc. 2021 Feb 17;143(6):2509-2522. doi: 10.1021/jacs.0c11296. Epub 2021 Feb 5.
Organometallic gold complexes are used in a range of catalytic reactions, and they often serve as catalyst precursors that mediate C-C bond formation. In this study, we investigate C-C coupling to form ethane from various phosphine-ligated gem-digold(I) methyl complexes including [Au(μ-CH)(PMeAr')][NTf], [Au(μ-CH)(XPhos)][NTf], and [Au(μ-CH)(BuXPhos)][NTf] {Ar' = CH-2,6-(CH-2,6-Me), CH-2,6-(CH-2,4,6-Me), CH-2,6-(CH-2,6-Pr), or CH-2,6-(CH-2,4,6-Pr); XPhos = 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl; BuXPhos = 2-di--butylphosphino-2',4',6'-triisopropylbiphenyl; NTf = bis(trifluoromethyl sulfonylimide)}. The gem-digold methyl complexes are synthesized through reaction between Au(CH)L and Au(L)(NTf) {L = phosphines listed above}. For [Au(μ-CH)(XPhos)][NTf] and [Au(μ-CH)(BuXPhos)][NTf], solid-state X-ray structures have been elucidated. The rate of ethane formation from [Au(μ-CH)(PMeAr')][NTf] increases as the steric bulk of the phosphine substituent Ar' decreases. Monitoring the rate of ethane elimination reactions by multinuclear NMR spectroscopy provides evidence for a second-order dependence on the gem-digold methyl complexes. Using experimental and computational evidence, it is proposed that the mechanism of C-C coupling likely involves (1) cleavage of [Au(μ-CH)(PMeAr')][NTf] to form Au(PRAr')(NTf) and Au(CH)(PMeAr'), (2) phosphine migration from a second equivalent of [Au(μ-CH)(PMeAr')][NTf] aided by binding of the Lewis acidic [Au(PMeAr')], formed in step 1, to produce [Au(CH)(PMeAr')][NTf] and [Au(PMeAr')], and (3) recombination of [Au(CH)(PMeAr')][NTf] and Au(CH)(PMeAr') to eliminate ethane.
有机金配合物被广泛应用于多种催化反应中,它们通常作为介导 C-C 键形成的催化剂前体。在这项研究中,我们研究了 C-C 偶联反应,从各种膦配体的偕二金(I)甲基配合物中合成乙烷,包括 [Au(μ-CH)(PMeAr')][NTf]、[Au(μ-CH)(XPhos)][NTf] 和 [Au(μ-CH)(BuXPhos)][NTf] {Ar' = CH-2,6-(CH-2,6-Me), CH-2,6-(CH-2,4,6-Me), CH-2,6-(CH-2,6-Pr), 或 CH-2,6-(CH-2,4,6-Pr); XPhos = 2-二环己基膦-2',4',6'-三异丙基联苯; BuXPhos = 2-二--丁基膦-2',4',6'-三异丙基联苯; NTf = 双(三氟甲烷磺酰)亚胺}。偕二金甲基配合物是通过 Au(CH)L 和 Au(L)(NTf) {L = 上述膦}之间的反应合成的。对于 [Au(μ-CH)(XPhos)][NTf] 和 [Au(μ-CH)(BuXPhos)][NTf],已经阐明了其固态 X 射线结构。[Au(μ-CH)(PMeAr')][NTf] 生成乙烷的速率随膦取代基 Ar' 的空间位阻减小而增加。通过多核 NMR 光谱监测乙烷消除反应的速率,提供了对偕二金甲基配合物的二级依赖关系的证据。利用实验和计算证据,提出 C-C 偶联的机制可能涉及 (1) [Au(μ-CH)(PMeAr')][NTf] 的裂解形成 Au(PRAr')(NTf) 和 Au(CH)(PMeAr'),(2) 第二当量的 [Au(μ-CH)(PMeAr')][NTf] 中的磷迁移,由形成于步骤 1 中的路易斯酸性 [Au(PMeAr')] 辅助,产生 [Au(CH)(PMeAr')][NTf] 和 [Au(PMeAr')],以及 (3) [Au(CH)(PMeAr')][NTf] 和 Au(CH)(PMeAr') 的重组消除乙烷。