Institute of Continuum and Materials Mechanics, Hamburg University of Technology, Hamburg, 21073, Germany.
Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, 52074, Germany.
Osteoarthritis Cartilage. 2021 Apr;29(4):592-602. doi: 10.1016/j.joca.2020.12.022. Epub 2021 Feb 3.
Articular cartilage degeneration is the hallmark change of osteoarthritis, a severely disabling disease with high prevalence and considerable socioeconomic and individual burden. Early, potentially reversible cartilage degeneration is characterized by distinct changes in cartilage composition and ultrastructure, while the tissue's morphology remains largely unaltered. Hence, early degenerative changes may not be diagnosed by clinical standard diagnostic tools.
Against this background, this study introduces a novel method to determine the tissue composition non-invasively. Our method involves quantitative MRI parameters (i.e., T, T, T and [Formula: see text] maps), compositional reference measurements (i.e., microspectroscopically determined local proteoglycan [PG] and collagen [CO] contents) and machine learning techniques (i.e., artificial neural networks [ANNs] and multivariate linear models [MLMs]) on 17 histologically grossly intact human cartilage samples.
Accuracy and precision were higher in ANN-based predictions than in MLM-based predictions and moderate-to-strong correlations were found between measured and predicted compositional parameters.
Once trained for the clinical setting, advanced machine learning techniques, in particular ANNs, may be used to non-invasively determine compositional features of cartilage based on quantitative MRI parameters with potential implications for the diagnosis of (early) degeneration and for the monitoring of therapeutic outcomes.
关节软骨退变是骨关节炎的标志性改变,骨关节炎是一种严重致残的疾病,具有较高的患病率和相当大的社会经济及个体负担。早期、潜在可逆转的软骨退变以软骨成分和超微结构的明显变化为特征,而组织形态基本保持不变。因此,临床标准诊断工具可能无法诊断早期退行性改变。
针对这一背景,本研究提出了一种新的方法来非侵入性地确定组织成分。我们的方法涉及定量 MRI 参数(即 T 1 、T 2 、T 2 relaxometry 和 [Formula: see text] 图)、组成参考测量值(即通过微观光谱学确定的局部蛋白聚糖 [PG] 和胶原 [CO] 含量)和机器学习技术(即人工神经网络 [ANNs] 和多元线性模型 [MLMs]),共涉及 17 个大体上完整的人类软骨样本。
基于 ANN 的预测的准确性和精密度高于基于 MLM 的预测,并且在测量和预测的组成参数之间发现了中度至强的相关性。
一旦针对临床环境进行了训练,先进的机器学习技术,特别是人工神经网络,可以用于根据定量 MRI 参数无创地确定软骨的组成特征,这可能对(早期)退变的诊断和治疗效果的监测具有重要意义。