Suppr超能文献

多参数 MRI 与计算模型在评估人类关节软骨特性中的应用:一种综合方法。

Multiparametric MRI and Computational Modelling in the Assessment of Human Articular Cartilage Properties: A Comprehensive Approach.

机构信息

Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany.

Department of Continuum Mechanics, RWTH Aachen University, Aachen, Germany.

出版信息

Biomed Res Int. 2018 May 15;2018:9460456. doi: 10.1155/2018/9460456. eCollection 2018.

Abstract

Quantitative magnetic resonance imaging (qMRI) is a promising approach to detect early cartilage degeneration. However, there is no consensus on which cartilage component contributes to the tissue's qMRI signal properties. 1, 1, and 2 maps of cartilage samples ( = 8) were generated on a clinical 3.0-T MRI system. All samples underwent histological assessment to ensure structural integrity. For cross-referencing, a discretized numerical model capturing distinct compositional and structural tissue properties, that is, fluid fraction (FF), proteoglycan (PG) and collagen (CO) content and collagen fiber orientation (CFO), was implemented. In a pixel-wise and region-specific manner (central versus peripheral region), qMRI parameter values and modelled tissue parameters were correlated and quantified in terms of Spearman's correlation coefficient . Significant correlations were found between modelled compositional parameters and 1 and 2, in particular in the central region (1: ≥ 0.7 [FF, CFO], ≤ -0.8 [CO, PG]; 2: ≥ 0.67 [FF, CFO], ≤ -0.71 [CO, PG]). For 1, correlations were considerably weaker and fewer (0.16 ≤ ≤ -0.15). QMRI parameters are characterized in their biophysical properties and their sensitivity and specificity profiles in a basic scientific context. Although none of these is specific towards any particular cartilage constituent, 1 and 2 reflect actual tissue compositional features more closely than 1.

摘要

定量磁共振成像(qMRI)是一种很有前途的方法,可以用于检测早期软骨退变。然而,目前对于哪种软骨成分会影响组织的 qMRI 信号特性还没有共识。在临床 3.0T MRI 系统上生成了 8 个软骨样本的 1、1 和 2 图。所有样本均经过组织学评估,以确保结构完整性。为了进行交叉参考,实施了一个离散数值模型,该模型可以捕获不同的组成和结构组织特性,即水分数(FF)、蛋白聚糖(PG)和胶原(CO)含量以及胶原纤维取向(CFO)。以像素和区域特异性的方式(中央与外周区域),将 qMRI 参数值与建模组织参数进行相关性分析,并使用 Spearman 相关系数 进行定量分析。在中央区域,模型化的组成参数与 1 和 2 之间存在显著相关性(1:≥0.7 [FF,CFO],≤-0.8 [CO,PG];2:≥0.67 [FF,CFO],≤-0.71 [CO,PG])。在 1 中,相关性较弱且较少(0.16 ≤ ≤ -0.15)。qMRI 参数在基本科学背景下,根据其生物物理特性以及敏感性和特异性特征进行了描述。尽管这些特性都没有针对任何特定的软骨成分,但 1 和 2 比 1 更能反映实际的组织组成特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27db/5976938/5c2309e14bd2/BMRI2018-9460456.003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验