Suppr超能文献

决策树算法使用功能和环境预测因子识别康复后可能出院回家的脑卒中患者。

Decision Tree Algorithm Identifies Stroke Patients Likely Discharge Home After Rehabilitation Using Functional and Environmental Predictors.

机构信息

Department of Rehabilitation, Faculty of Health Sciences, Hiroshima Cosmopolitan University, Hiroshima, Japan; Department of Rehabilitation, Araki Neurosurgical Hospital, Hiroshima, Japan.

Department of Rehabilitation, Araki Neurosurgical Hospital, Hiroshima, Japan; Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan.

出版信息

J Stroke Cerebrovasc Dis. 2021 Apr;30(4):105636. doi: 10.1016/j.jstrokecerebrovasdis.2021.105636. Epub 2021 Feb 3.

Abstract

BACKGROUND AND PURPOSE

The importance of environmental factors for stroke patients to achieve home discharge was not scientifically proven. There are limited studies on the application of the decision tree algorithm with various functional and environmental variables to identify stroke patients with a high possibility of home discharge. The present study aimed to identify the factors, including functional and environmental factors, affecting home discharge after stroke inpatient rehabilitation using the machine learning method.

METHOD

This was a cohort study on data from the maintained database of all patients with stroke who were admitted to the convalescence rehabilitation ward of our facility. In total, 1125 stroke patients were investigated. We developed three classification and regression tree (CART) models to identify the possibility of home discharge after inpatient rehabilitation.

RESULTS

Among three models, CART model incorporating basic information, functional factor, and environmental factor variables achieved the highest accuracy for identification of home discharge. This model identified FIM dressing of the upper body (score of ≤2 or >2) as the first single discriminator for home discharge. Performing house renovation was associated with a high possibility of home discharge even in patients with stroke who had a poor FIM score in the ability to dress the upper body (≤2) at admission into the convalescence rehabilitation ward. Interestingly, many patients who performed house renovation have achieved home discharge regardless of the degree of lower limb paralysis.

CONCLUSION

We identified the influential factors for realizing home discharge using the decision tree algorithm, including environmental factors, in patients with convalescent stroke.

摘要

背景与目的

环境因素对脑卒中患者实现居家出院的重要性尚未得到科学证明。应用具有各种功能和环境变量的决策树算法来识别具有高居家出院可能性的脑卒中患者的研究有限。本研究旨在应用机器学习方法,确定影响脑卒中患者住院康复后居家出院的因素,包括功能和环境因素。

方法

这是一项对我院疗养康复病房所有脑卒中患者维持数据库中数据的队列研究。共调查了 1125 例脑卒中患者。我们开发了三个分类回归树(CART)模型,以确定住院康复后居家出院的可能性。

结果

在三个模型中,纳入基本信息、功能因素和环境因素变量的 CART 模型对居家出院的识别具有最高的准确性。该模型确定,在入院时,身体上部 FIM 穿衣(评分≤2 或>2)是居家出院的第一个单一判别因素。即使在入院时身体上部穿衣能力 FIM 评分较差(≤2)的脑卒中患者中,进行房屋装修也与高居家出院可能性相关。有趣的是,许多进行房屋装修的患者无论下肢瘫痪程度如何,都实现了居家出院。

结论

我们使用决策树算法确定了影响脑卒中恢复期患者居家出院的因素,包括环境因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验