School of Occupational Therapy, National Taiwan University College of Medicine, 17, F4, Xu-Zhou Road, Taipei 100, Taiwan.
Department of Speech Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, 365, Mingde Road, Taipei 112, Taiwan.
Int J Environ Res Public Health. 2023 Feb 25;20(5):4123. doi: 10.3390/ijerph20054123.
Many stroke survivors demonstrate arm nonuse despite good arm motor function. This retrospective secondary analysis aims to identify predictors of arm nonusers with good arm motor function after stroke rehabilitation. A total of 78 participants were categorized into 2 groups using the Fugl-Meyer Assessment Upper Extremity Scale (FMA-UE) and the Motor Activity Log Amount of Use (MAL-AOU). Group 1 comprised participants with good motor function (FMA-UE ≥ 31) and low daily upper limb use (MAL-AOU ≤ 2.5), and group 2 comprised all other participants. Feature selection analysis was performed on 20 potential predictors to identify the 5 most important predictors for group membership. Predictive models were built with the five most important predictors using four algorithms. The most important predictors were preintervention scores on the FMA-UE, MAL-Quality of Movement, Wolf Motor Function Test-Quality, MAL-AOU, and Stroke Self-Efficacy Questionnaire. Predictive models classified the participants with accuracies ranging from 0.75 to 0.94 and areas under the receiver operating characteristic curve ranging from 0.77 to 0.97. The result indicates that measures of arm motor function, arm use in activities of daily living, and self-efficacy could predict postintervention arm nonuse despite good arm motor function in stroke. These assessments should be prioritized in the evaluation process to facilitate the design of individualized stroke rehabilitation programs to reduce arm nonuse.
许多中风幸存者尽管上肢运动功能良好,但仍表现出上肢废用。本回顾性二次分析旨在确定中风康复后上肢运动功能良好但上肢仍不活动的患者的预测因素。共有 78 名参与者根据 Fugl-Meyer 上肢评估量表(FMA-UE)和运动活动日志使用量(MAL-AOU)分为 2 组。组 1 包括上肢运动功能良好(FMA-UE≥31)且日常上肢使用量低(MAL-AOU≤2.5)的参与者,组 2 则包括其他所有参与者。对 20 个潜在预测因素进行特征选择分析,以确定对分组最重要的 5 个预测因素。使用 4 种算法,基于 5 个最重要的预测因素构建预测模型。最重要的预测因素是 FMA-UE、MAL-运动质量、Wolf 运动功能测试-质量、MAL-AOU 和中风自我效能问卷的干预前得分。预测模型的分类准确率为 0.75 至 0.94,受试者工作特征曲线下面积为 0.77 至 0.97。结果表明,上肢运动功能、日常生活活动中的上肢使用情况和自我效能感等指标可以预测中风后上肢运动功能良好但上肢仍不活动的情况。这些评估应在评估过程中优先考虑,以促进个体化中风康复计划的设计,减少上肢废用。