Suppr超能文献

基于物理的计算和理论方法在无规卷曲蛋白质中的应用。

Physics-based computational and theoretical approaches to intrinsically disordered proteins.

机构信息

Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States.

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States.

出版信息

Curr Opin Struct Biol. 2021 Apr;67:219-225. doi: 10.1016/j.sbi.2020.12.012. Epub 2021 Feb 2.

Abstract

Intrinsically disordered proteins (IDPs) are an important class of proteins that do not fold to a well-defined three-dimensional shape but rather adopt an ensemble of inter-converting conformations. This feature makes their experimental characterization challenging and invites a theoretical and computational approach to complement experimental studies. In this review, we highlight the recent progress in developing new computational and theoretical approaches to study the structure and dynamics of monomeric and order higher assemblies of IDPs, with a particular emphasis on their phase separation into protein-rich condensates.

摘要

无规卷曲蛋白质(IDPs)是一类重要的蛋白质,它们不会折叠成明确的三维形状,而是采用一系列相互转化的构象。这一特性使得它们的实验特征变得具有挑战性,并需要一种理论和计算方法来补充实验研究。在这篇综述中,我们强调了最近在开发新的计算和理论方法来研究 IDPs 的单体和更高阶组装的结构和动力学方面的进展,特别强调了它们向富含蛋白质的凝聚相的相分离。

相似文献

1
Physics-based computational and theoretical approaches to intrinsically disordered proteins.
Curr Opin Struct Biol. 2021 Apr;67:219-225. doi: 10.1016/j.sbi.2020.12.012. Epub 2021 Feb 2.
2
Investigating the Conformational Ensembles of Intrinsically Disordered Proteins with a Simple Physics-Based Model.
J Phys Chem B. 2020 May 21;124(20):4097-4113. doi: 10.1021/acs.jpcb.0c01949. Epub 2020 May 13.
3
Structure and Transition Dynamics of Intrinsically Disordered Proteins Probed by Single-Molecule Spectroscopy.
Langmuir. 2022 Oct 25;38(42):12764-12772. doi: 10.1021/acs.langmuir.2c02409. Epub 2022 Oct 10.
4
Ensemble Calculation for Intrinsically Disordered Proteins Using NMR Parameters.
Adv Exp Med Biol. 2015;870:123-47. doi: 10.1007/978-3-319-20164-1_4.
5
Molecular simulations of IDPs: From ensemble generation to IDP interactions leading to disorder-to-order transitions.
Prog Mol Biol Transl Sci. 2021;183:135-185. doi: 10.1016/bs.pmbts.2021.06.003. Epub 2021 Jul 29.
6
Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins.
Biochem Soc Trans. 2022 Feb 28;50(1):541-554. doi: 10.1042/BST20210499.
7
Recent Advances in Computational Protocols Addressing Intrinsically Disordered Proteins.
Biomolecules. 2019 Apr 11;9(4):146. doi: 10.3390/biom9040146.
9
Conformational propensities of intrinsically disordered proteins from NMR chemical shifts.
Chemphyschem. 2013 Sep 16;14(13):3034-45. doi: 10.1002/cphc.201300387. Epub 2013 Jun 21.
10
Criticality in the conformational phase transition among self-similar groups in intrinsically disordered proteins: Probed by salt-bridge dynamics.
Biochim Biophys Acta Proteins Proteom. 2020 Oct;1868(10):140474. doi: 10.1016/j.bbapap.2020.140474. Epub 2020 Jun 21.

引用本文的文献

2
Computer Simulations Show That Liquid-Liquid Phase Separation Enhances Self-Assembly.
ACS Nano. 2025 Aug 26;19(33):30275-30291. doi: 10.1021/acsnano.5c08120. Epub 2025 Aug 9.
3
Hydrophobicity in Intrinsically Disordered Protein Force Fields: Implications for Conformational Ensembles and Protein-Protein Interactions.
J Phys Chem B. 2025 Jul 10;129(27):6817-6827. doi: 10.1021/acs.jpcb.5c02360. Epub 2025 Jun 26.
4
The ribonucleoprotein hnRNPA1 mediates binding to RNA and DNA telomeric G-quadruplexes through an RGG-rich region.
J Biol Chem. 2025 May;301(5):108491. doi: 10.1016/j.jbc.2025.108491. Epub 2025 Apr 8.
7
Identifying Sequence Effects on Chain Dimensions of Disordered Proteins by Integrating Experiments and Simulations.
JACS Au. 2024 Nov 14;4(12):4729-4743. doi: 10.1021/jacsau.4c00673. eCollection 2024 Dec 23.
8
Driving Forces of RNA Condensation Revealed through Coarse-Grained Modeling with Explicit Mg.
bioRxiv. 2025 Feb 28:2024.11.17.624048. doi: 10.1101/2024.11.17.624048.
10
Design of intrinsically disordered protein variants with diverse structural properties.
Sci Adv. 2024 Aug 30;10(35):eadm9926. doi: 10.1126/sciadv.adm9926. Epub 2024 Aug 28.

本文引用的文献

1
A predictive coarse-grained model for position-specific effects of post-translational modifications.
Biophys J. 2021 Apr 6;120(7):1187-1197. doi: 10.1016/j.bpj.2021.01.034. Epub 2021 Feb 12.
2
Molecular Details of Protein Condensates Probed by Microsecond Long Atomistic Simulations.
J Phys Chem B. 2020 Dec 24;124(51):11671-11679. doi: 10.1021/acs.jpcb.0c10489. Epub 2020 Dec 10.
3
Designing the Morphology of Separated Phases in Multicomponent Liquid Mixtures.
Phys Rev Lett. 2020 Nov 20;125(21):218003. doi: 10.1103/PhysRevLett.125.218003.
4
Sequence dependent phase separation of protein-polynucleotide mixtures elucidated using molecular simulations.
Nucleic Acids Res. 2020 Dec 16;48(22):12593-12603. doi: 10.1093/nar/gkaa1099.
5
Refining All-Atom Protein Force Fields for Polar-Rich, Prion-like, Low-Complexity Intrinsically Disordered Proteins.
J Phys Chem B. 2020 Oct 29;124(43):9505-9512. doi: 10.1021/acs.jpcb.0c07545. Epub 2020 Oct 20.
6
The proline-rich domain promotes Tau liquid-liquid phase separation in cells.
J Cell Biol. 2020 Nov 2;219(11). doi: 10.1083/jcb.202006054.
7
Unraveling Molecular Interactions in Liquid-Liquid Phase Separation of Disordered Proteins by Atomistic Simulations.
J Phys Chem B. 2020 Oct 15;124(41):9009-9016. doi: 10.1021/acs.jpcb.0c06288. Epub 2020 Oct 5.
8
Simulation methods for liquid-liquid phase separation of disordered proteins.
Curr Opin Chem Eng. 2019 Mar;23:92-98. doi: 10.1016/j.coche.2019.03.004. Epub 2019 Apr 24.
10
Analytical Theory for Sequence-Specific Binary Fuzzy Complexes of Charged Intrinsically Disordered Proteins.
J Phys Chem B. 2020 Aug 6;124(31):6709-6720. doi: 10.1021/acs.jpcb.0c04575. Epub 2020 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验