Suppr超能文献

分析人类脑电图中的粉红噪声和白噪声。

Characterizing pink and white noise in the human electroencephalogram.

机构信息

Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, Wollongong, NSW 2522, Australia.

出版信息

J Neural Eng. 2021 Mar 16;18(3). doi: 10.1088/1741-2552/abe399.

Abstract

The power spectrum of the human electroencephalogram (EEG) as a function of frequency is a mix of brain oscillations (Osc) (e.g. alpha activity around 10 Hz) and non-Osc or noise of uncertain origin. 'White noise' is uniformly distributed over frequency, while 'pink noise' has an inverse power-frequency relation (power ∝ 1/). Interest in EEG pink noise has been growing, but previous human estimates appear methodologically flawed. We propose a new approach to extract separate valid estimates of pink and white noise from an EEG power spectrum.We use simulated data to demonstrate its effectiveness compared with established procedures, and provide an illustrative example from a new resting eyes-open (EO) and eyes-closed (EC) dataset. The topographic characteristics of the obtained pink and white noise estimates are examined, as is the alpha power in this sample.Valid pink and white noise estimates were successfully obtained for each of our 5400 individual spectra (60 participants × 30 electrodes × 3 conditions/blocks [EO, EC, EO]). The 1/noise had a distinct central scalp topography, and white noise was occipital in distribution, both differing from the parietal topography of the alpha Osc. These differences point to their separate neural origins. EC pink and white noise powers were globally greater than in EO.. This valid estimation of pink and white noise in the human EEG holds promise for more accurate assessment of oscillatory neural activity in both typical and clinical groups, such as those with attention deficits. Further, outside the human EEG, the new methodology can be generalized to remove noise from spectra in many fields of science and technology.

摘要

人类脑电图(EEG)的功率谱随频率的变化是脑振荡(Osc)(例如 10Hz 左右的阿尔法活动)和非振荡或来源不明的噪声的混合体。“白噪声”在频率上均匀分布,而“粉红噪声”的功率与频率呈反比关系(功率∝1/)。人们对 EEG 粉红噪声的兴趣日益增加,但以前的人类估计似乎在方法上存在缺陷。我们提出了一种从 EEG 功率谱中提取粉红噪声和白噪声的有效方法。我们使用模拟数据来证明与现有方法相比,该方法的有效性,并提供了一个新的睁眼静息(EO)和闭眼静息(EC)数据集的示例。研究了获得的粉红噪声和白噪声估计的地形特征,以及该样本中的阿尔法功率。成功地为我们的 5400 个个体谱中的每一个(60 名参与者×30 个电极×3 个条件/块[EO、EC、EO])获得了有效的粉红噪声和白噪声估计。1/噪声具有明显的中央头皮地形,而白噪声在分布上是枕部的,这与阿尔法振荡的顶叶地形不同。这些差异表明它们的神经起源不同。EC 的粉红噪声和白噪声功率普遍大于 EO 的。这种在人类 EEG 中有效估计粉红噪声和白噪声的方法有望更准确地评估典型和临床人群(如注意力缺陷人群)的振荡神经活动。此外,在人类 EEG 之外,新的方法学可以推广到许多科学和技术领域的谱中去除噪声。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验