文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人类大脑中的脑电图默认模式网络:频谱区域场功率

EEG default mode network in the human brain: spectral regional field powers.

作者信息

Chen Andrew C N, Feng Weijia, Zhao Huixuan, Yin Yanling, Wang Peipei

机构信息

Center for Higher Brain Functions, Capital Medical University, Beijing 100069, China.

出版信息

Neuroimage. 2008 Jun;41(2):561-74. doi: 10.1016/j.neuroimage.2007.12.064. Epub 2008 Jan 15.


DOI:10.1016/j.neuroimage.2007.12.064
PMID:18403217
Abstract

Eyes-closed (EC) and eyes-open (EO) are essential behaviors in mammalians, including man. At resting EC-EO state, brain activity in the default mode devoid of task-demand has recently been established in fMRI. However, the corresponding comprehensive electrophysiological conditions are little known even though EEG has been recorded in humans for nearly 80 years. In this study, we examined the spatial characteristics of spectral distribution in EEG field powers, i.e., sitting quietly with an EC and EO resting state of 3 min each, measured with high-density 128-ch EEG recording and FFT signal analyses in 15 right-handed healthy college females. Region of interest was set at a threshold at 90% of the spectral effective value to delimit the dominant spatial field power of effective energy in brain activity. Low-frequency delta (0.5-3.5 Hz) EEG field power was distributed at the prefrontal area with great expansion of spatial field and enhancement of field power (t=-2.72, p<0.02) from the EC to the EO state. Theta (4-7 Hz) EEG field power was distributed over the fronto-central area and leaned forward from EC to the EO state but with drastic reduction in field power (t=4.04, p<0.01). The middle-frequency alpha-1 (7.5-9.5 Hz) and alpha-2 (10-12 Hz) EEG powers exhibited bilateral distribution over the posterior areas with an anterior field in lower alpha-1. Both showed significantly reduction of field powers (respectively, W=120, p<0.001 for alpha-1; t=4.12, p<0.001 for alpha-2) from EC to the EO state. Beta-1 (13-23 Hz) exhibited a similar spatial region over the posterior area as in alpha-2 and showed reduction of field power (t=4.42, p<0.001) from EC to the EO state. In contrast, high-frequency beta-2 and gamma band exhibited similar, mainly prefrontal distribution in field power, and exhibited no change from EC to the EO state. Corresponding correlation analyses indicated significant group association between EC and EO only in the field powers of delta (r=0.95, p<0.001) and theta (r=0.77, p<0.001) band. In addition, the great inter-individual variability (90 folds in alpha-1, 62 folds in alpha-2) in regional field power was largely observed in the EC state (10 folds) than the EO state in subjects. To summarize, our study depicts a network of spectral EEG activities simultaneously operative at well defined regional fields in the EC state, varying specifically between EC and EO states. In contrast to transient EEG spectral rhythmic dynamics, current study of long-lasting (e.g. 3 min) spectral field powers can characterize state features in EEG. The EEG default mode network (EEG-DMN) of spectral field powers at rest in the respective EC or EO state is valued to serve as the basal electrophysiological condition in human brain. In health, this EEG-DMN is deemed essential for evaluation of brain functions without task demands for gender difference, developmental change in age span, and brain response to task activation. It is expected to define brain dysfunction in disease at resting state and with consequences for sensory, affective and cognitive alteration in the human brain.

摘要

闭眼(EC)和睁眼(EO)是包括人类在内的哺乳动物的基本行为。在静息的EC - EO状态下,功能磁共振成像(fMRI)最近已证实了在无任务需求的默认模式下的大脑活动。然而,尽管脑电图(EEG)在人类中已记录了近80年,但相应的全面电生理状况却鲜为人知。在本研究中,我们使用高密度128通道脑电图记录和快速傅里叶变换(FFT)信号分析,对15名右利手健康大学女性在EC和EO静息状态下各静坐3分钟时脑电图场功率的频谱分布空间特征进行了研究。感兴趣区域设定为频谱有效值的90%的阈值,以界定大脑活动中有效能量的主要空间场功率。低频δ波(0.5 - 3.5赫兹)脑电图场功率分布在前额叶区域,从EC状态到EO状态,空间场大幅扩展且场功率增强(t = -2.72,p < 0.02)。θ波(4 - 7赫兹)脑电图场功率分布在额中央区域,从EC状态到EO状态向前倾斜,但场功率急剧下降(t = 4.04,p < 0.01)。中频α1(7.5 - 9.5赫兹)和α2(10 - 12赫兹)脑电图功率在后脑区域呈双侧分布,α1在前部区域场强较低。从EC状态到EO状态,两者均显示出场功率显著降低(α1分别为W = 120,p < 0.001;α2为t = 4.12,p < 0.001)。β1(13 - 23赫兹)在后部区域的空间分布与α2相似,并且从EC状态到EO状态场功率降低(t = 4.42,p < 0.001)。相比之下,高频β2和γ波段在场功率上表现出相似的、主要是前额叶的分布,并且从EC状态到EO状态没有变化。相应的相关性分析表明,仅在δ波(r = 0.95,p < 0.001)和θ波(r = 0.77,p < 0.001)波段的场功率中,EC和EO之间存在显著的组间关联。此外,在受试者中,与EO状态相比,在EC状态下区域场功率的个体间差异更大(α1为90倍,α2为62倍,而在EC状态下为10倍)。总之,我们的研究描绘了一个在EC状态下在明确界定的区域场中同时起作用的脑电图频谱活动网络,在EC和EO状态之间存在特定变化。与瞬态脑电图频谱节律动态不同,当前对持久(例如3分钟)频谱场功率的研究可以表征脑电图中的状态特征。在各自的EC或EO状态下静息时频谱场功率的脑电图默认模式网络(EEG - DMN)被认为是人类大脑的基础电生理状况。在健康状态下,这种EEG - DMN被认为对于评估无任务需求时的大脑功能、性别差异、年龄跨度的发育变化以及大脑对任务激活的反应至关重要。预计它可以定义静息状态下疾病中的脑功能障碍以及对人类大脑感觉、情感和认知改变的影响。

相似文献

[1]
EEG default mode network in the human brain: spectral regional field powers.

Neuroimage. 2008-6

[2]
Slow EEG pattern predicts reduced intrinsic functional connectivity in the default mode network: an inter-subject analysis.

Neuroimage. 2010-6-9

[3]
Mode and site of acupuncture modulation in the human brain: 3D (124-ch) EEG power spectrum mapping and source imaging.

Neuroimage. 2006-2-15

[4]
Three-dimensional localization of abnormal EEG activity in migraine: a low resolution electromagnetic tomography (LORETA) study of migraine patients in the pain-free interval.

Brain Topogr. 2008-9

[5]
Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI.

Neuroimage. 2007-5-15

[6]
Enhanced frontal low and high frequency power and synchronization in the resting EEG of parkinsonian patients.

Neuroimage. 2008-7-1

[7]
Quantitative EEG findings in different stages of Alzheimer's disease.

J Clin Neurophysiol. 2006-10

[8]
Frontal theta EEG activity correlates negatively with the default mode network in resting state.

Int J Psychophysiol. 2008-3

[9]
[Quantitative EEG characteristics of the state of depressive phase and the state of remission in major depression].

Seishin Shinkeigaku Zasshi. 1996

[10]
Slowing of oscillatory brain activity is a stable characteristic of Parkinson's disease without dementia.

Brain. 2007-7

引用本文的文献

[1]
Teaching-induced changes in neural networks: Toward a model of the creative universe.

Neuroimage Rep. 2025-8-1

[2]
Frequency band analysis of nonstationary multivariate time series.

Biometrics. 2025-7-3

[3]
Brain Complexity and Parametrization of Power Spectral Density in Children with Specific Language Impairment.

Entropy (Basel). 2025-5-28

[4]
FREQ-NESS Reveals the Dynamic Reconfiguration of Frequency-Resolved Brain Networks During Auditory Stimulation.

Adv Sci (Weinh). 2025-5

[5]
Contribution of Scalp Regions to Machine Learning-Based Classification of Dementia Utilizing Resting-State qEEG Signals.

Neuropsychiatr Dis Treat. 2024-12-6

[6]
Machine learning based on the EEG and structural MRI can predict different stages of vascular cognitive impairment.

Front Aging Neurosci. 2024-4-5

[7]
Effect of total sleep deprivation on effective EEG connectivity for young male in resting-state networks in different eye states.

Front Neurosci. 2023-10-19

[8]
Machine learning for the detection of social anxiety disorder using effective connectivity and graph theory measures.

Front Psychiatry. 2023-5-9

[9]
Age-dependent neurovascular coupling characteristics in children and adults during general anesthesia.

Biomed Opt Express. 2023-4-24

[10]
Effects of inhaling essential oils of Citrus limonum L., Santalum album, and Cinnamomum camphora on human brain activity.

Brain Behav. 2023-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索