Chemistry Division, U.S. Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
NRL HBCU/MI Summer Intern, Chemistry Division, U.S. Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA.
Mater Sci Eng C Mater Biol Appl. 2021 Jan;120:111685. doi: 10.1016/j.msec.2020.111685. Epub 2020 Oct 27.
We present a low-cost, easy-to-implement platform for printing materials and interfacing them with eukaryotic cells. We show that thermal or chemical reduction of a graphene oxide thin film allows water-assisted delamination of the film from glass or plastic. The chemical and physical properties and permeability of the resulting film are dependent on the method of reduction and deposition of the graphene oxide, with thermal reduction removing more oxidized carbon functionality than chemical reduction. We also developed a method to attach the films onto cell surfaces using a thin layer of gelatin as an adhesive. In general, the films are highly impermeable to nutrients and we observed a significant amount of cell death when gelatin was not used; gelatin enables diffusion of nutrients for sustained cell viability. The combination of nanoscale membranes with a low melting point biopolymer allows us to reversibly interface cells with cargo transferred by graphene oxide while maintaining cell viability. To demonstrate delivery of electronic structures, we modified a commercial off-the-shelf printer to print a silver-based ink directly onto the reduced graphene oxide films which we then transferred to the surface of the cells.
我们提出了一个低成本、易于实现的平台,用于打印材料并将其与真核细胞相连接。我们表明,通过热或化学还原氧化石墨烯薄膜可以实现水辅助从玻璃或塑料上剥离薄膜。所得薄膜的化学和物理性质及其渗透性取决于氧化石墨烯的还原和沉积方法,其中热还原比化学还原去除更多的氧化碳官能团。我们还开发了一种使用薄的明胶层作为粘合剂将薄膜附着到细胞表面的方法。一般来说,这些薄膜对营养物质的渗透性很低,当不使用明胶时我们观察到大量的细胞死亡;明胶使营养物质扩散,从而维持细胞活力。纳米级薄膜与低熔点生物聚合物的结合使我们能够在保持细胞活力的同时,通过氧化石墨烯可逆地与细胞进行货物传递。为了演示电子结构的传递,我们修改了一台商用现成的打印机,直接将基于银的墨水打印到还原氧化石墨烯薄膜上,然后将其转移到细胞表面。