Escuredo Olga, Rodríguez-Flores María Shantal, Meno Laura, Seijo María Carmen
Department of Vegetal Biology and Soil Sciences, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain.
Foods. 2021 Feb 3;10(2):317. doi: 10.3390/foods10020317.
There is an increase in the consumption of natural foods with healthy benefits such as honey. The physicochemical composition contributes to the particularities of honey that differ depending on the botanical origin. Botanical and geographical declaration protects consumers from possible fraud and ensures the quality of the product. The objective of this study was to develop prediction models using a portable near-Infrared (MicroNIR) Spectroscopy to contribute to authenticate honeys from Northwest Spain. Based on reference physicochemical analyses of honey, prediction equations using principal components analysis and partial least square regression were developed. Statistical descriptors were good for moisture, hydroxymethylfurfural (HMF), color (Pfund, L and b* coordinates of CIELab) and flavonoids (RSQ > 0.75; RPD > 2.0), and acceptable for electrical conductivity (EC), pH and phenols (RSQ > 0.61; RDP > 1.5). Linear discriminant analysis correctly classified the 88.1% of honeys based on physicochemical parameters and botanical origin (heather, chestnut, eucalyptus, blackberry, honeydew, multifloral). Estimation of quality and physicochemical properties of honey with NIR-spectra data and chemometrics proves to be a powerful tool to fulfil quality goals of this bee product. Results supported that the portable spectroscopy devices provided an effective tool for the apicultural sector to rapid in-situ classification and authentication of honey.
具有健康益处的天然食品(如蜂蜜)的消费量有所增加。其物理化学组成导致了蜂蜜的特殊性,而这些特殊性会因植物来源的不同而有所差异。植物和地理标识可保护消费者免受可能的欺诈行为,并确保产品质量。本研究的目的是开发预测模型,利用便携式近红外(MicroNIR)光谱技术来辅助鉴定西班牙西北部的蜂蜜。基于对蜂蜜的参考物理化学分析,利用主成分分析和偏最小二乘回归建立了预测方程。统计描述符对水分、羟甲基糠醛(HMF)、颜色(CIELab的潘氏度、L和b*坐标)和黄酮类化合物效果良好(RSQ > 0.75;RPD > 2.0),对电导率(EC)、pH值和酚类物质可接受(RSQ > 0.61;RDP > 1.5)。线性判别分析根据物理化学参数和植物来源(石南、栗子、桉树、黑莓、甘露、多花)正确分类了88.1%的蜂蜜。利用近红外光谱数据和化学计量学估算蜂蜜的质量和物理化学性质被证明是实现这种蜂产品质量目标的有力工具。结果表明,便携式光谱设备为养蜂业提供了一种有效的工具,可快速对蜂蜜进行现场分类和鉴定。