Suppr超能文献

一种基于智能负载控制的天基物联网随机接入方案

An Intelligent Load Control-Based Random Access Scheme for Space-Based Internet of Things.

作者信息

Fei Changjiang, Jiang Bin, Xu Kun, Wang Lei, Zhao Baokang

机构信息

College of Information and Communication, National University of Defense Technology, Wuhan 430010, China.

College of Computer, National University of Defense Technology, Changsha 410073, China.

出版信息

Sensors (Basel). 2021 Feb 3;21(4):1040. doi: 10.3390/s21041040.

Abstract

Random access is one of the most competitive multiple access schemes for future space-based Internet of Things (S-IoT) due to its support for massive connections and grant-free transmission, as well as its ease of implementation. However, firstly, existing random access schemes are highly sensitive to load: once the load exceeds a certain critical value, the throughput will drop sharply due to the increased probability of data collision. Moreover, due to variable satellite coverage and bursty traffic, the network load of S-IoT changes dynamically; therefore, when existing random access schemes are applied directly to the S-IoT environment, the actual throughput is far below the theoretical maximum. Accordingly, this paper proposes an intelligent load control-based random access scheme based on CRDSA++, which is an enhanced version of the contention resolution diversity slotted ALOHA (CRDSA) and extends the CRDSA concept to more than two replicas. The proposed scheme is dubbed load control-based three-replica contention resolution diversity slotted ALOHA (LC-CRDSA3). LC-CRDSA3 actively controls network load. When the load threatens to exceed the critical value, only certain nodes are allowed to send data, and the load is controlled to be near the critical value, thereby effectively improving the throughput. In order to accurately carry out load control, we innovatively propose a maximum likelihood estimation (MLE)-based load estimation algorithm, which estimates the load value of each received frame by making full use of the number of time slots in different states. On this basis, LC-CRDSA3 adopts computational intelligence-based time series forecasting technology to predict the load values of future frames using the historical load values. We evaluated the performance of LC-CRDSA3 through a series of simulation experiments and compared it with CRDSA++. Our experimental results demonstrate that in S-IoT contexts where the load changes dynamically, LC-CRDSA3 can obtain network throughput that is close to the theoretical maximum across a wide load range through accurate load control.

摘要

随机接入是未来天基物联网(S-IoT)中最具竞争力的多址接入方案之一,因为它支持大规模连接和免授权传输,且易于实现。然而,首先,现有的随机接入方案对负载高度敏感:一旦负载超过某个临界值,由于数据冲突概率增加,吞吐量将急剧下降。此外,由于卫星覆盖范围可变和流量突发,S-IoT的网络负载动态变化;因此,当将现有的随机接入方案直接应用于S-IoT环境时,实际吞吐量远低于理论最大值。相应地,本文提出了一种基于智能负载控制的随机接入方案,该方案基于CRDSA++,CRDSA++是竞争解决分集时隙ALOHA(CRDSA)的增强版本,并将CRDSA概念扩展到两个以上副本。所提出的方案被称为基于负载控制的三副本竞争解决分集时隙ALOHA(LC-CRDSA3)。LC-CRDSA3主动控制网络负载。当负载有可能超过临界值时,只允许某些节点发送数据,并将负载控制在临界值附近,从而有效地提高吞吐量。为了准确地进行负载控制,我们创新性地提出了一种基于最大似然估计(MLE)的负载估计算法,该算法通过充分利用不同状态下的时隙数量来估计每个接收到的帧的负载值。在此基础上,LC-CRDSA3采用基于计算智能的时间序列预测技术,利用历史负载值预测未来帧的负载值。我们通过一系列仿真实验评估了LC-CRDSA3的性能,并将其与CRDSA++进行了比较。我们的实验结果表明,在负载动态变化的S-IoT环境中,LC-CRDSA3通过精确的负载控制,在较宽的负载范围内能够获得接近理论最大值的网络吞吐量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f77/7913567/d8705cd02516/sensors-21-01040-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验