Suppr超能文献

香港全港范围的 Brugada 综合征队列研究:使用随机生存森林和非负矩阵分解预测长期结局的预测因素。

Territory-wide cohort study of Brugada syndrome in Hong Kong: predictors of long-term outcomes using random survival forests and non-negative matrix factorisation.

机构信息

Cardiovascular Analytics Group, Laboratory of Cardiovascular Physiology, Hong Kong, China.

School of Data Science, City University of Hong Kong, Kowloon, Hong Kong.

出版信息

Open Heart. 2021 Feb;8(1). doi: 10.1136/openhrt-2020-001505.

Abstract

OBJECTIVES

Brugada syndrome (BrS) is an ion channelopathy that predisposes affected patients to spontaneous ventricular tachycardia/fibrillation (VT/VF) and sudden cardiac death. The aim of this study is to examine the predictive factors of spontaneous VT/VF.

METHODS

This was a territory-wide retrospective cohort study of patients diagnosed with BrS between 1997 and 2019. The primary outcome was spontaneous VT/VF. Cox regression was used to identify significant risk predictors. Non-linear interactions between variables (latent patterns) were extracted using non-negative matrix factorisation (NMF) and used as inputs into the random survival forest (RSF) model.

RESULTS

This study included 516 consecutive BrS patients (mean age of initial presentation=50±16 years, male=92%) with a median follow-up of 86 (IQR: 45-118) months. The cohort was divided into subgroups based on initial disease manifestation: asymptomatic (n=314), syncope (n=159) or VT/VF (n=41). Annualised event rates per person-year were 1.70%, 0.05% and 0.01% for the VT/VF, syncope and asymptomatic subgroups, respectively. Multivariate Cox regression analysis revealed initial presentation of VT/VF (HR=24.0, 95% CI=1.21 to 479, p=0.037) and SD of P-wave duration (HR=1.07, 95% CI=1.00 to 1.13, p=0.044) were significant predictors. The NMF-RSF showed the best predictive performance compared with RSF and Cox regression models (precision: 0.87 vs 0.83 vs. 0.76, recall: 0.89 vs. 0.85 vs 0.73, F1-score: 0.88 vs 0.84 vs 0.74).

CONCLUSIONS

Clinical history, electrocardiographic markers and investigation results provide important information for risk stratification. Machine learning techniques using NMF and RSF significantly improves overall risk stratification performance.

摘要

目的

Brugada 综合征(BrS)是一种离子通道病,使受影响的患者易发生自发性室性心动过速/颤动(VT/VF)和心源性猝死。本研究旨在探讨自发性 VT/VF 的预测因素。

方法

这是一项对 1997 年至 2019 年间诊断为 BrS 的患者进行的全港回顾性队列研究。主要结局为自发性 VT/VF。使用 Cox 回归识别显著的风险预测因素。采用非负矩阵分解(NMF)提取变量之间的非线性相互作用(潜在模式),并将其作为输入输入随机生存森林(RSF)模型。

结果

本研究纳入了 516 例连续的 BrS 患者(首次就诊时的平均年龄为 50±16 岁,男性占 92%),中位随访时间为 86(IQR:45-118)个月。根据初始疾病表现将队列分为亚组:无症状(n=314)、晕厥(n=159)或 VT/VF(n=41)。VT/VF、晕厥和无症状亚组的年化事件发生率分别为 1.70%、0.05%和 0.01%。多变量 Cox 回归分析显示,VT/VF 的首发表现(HR=24.0,95%CI=1.21 至 479,p=0.037)和 P 波持续时间的标准差(HR=1.07,95%CI=1.00 至 1.13,p=0.044)是显著的预测因素。NMF-RSF 与 RSF 和 Cox 回归模型相比,具有最佳的预测性能(精确性:0.87 与 0.83 与 0.76,召回率:0.89 与 0.85 与 0.73,F1 评分:0.88 与 0.84 与 0.74)。

结论

临床病史、心电图标志物和检查结果为风险分层提供了重要信息。使用 NMF 和 RSF 的机器学习技术可显著提高整体风险分层性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02e8/7871343/6b7c755ff549/openhrt-2020-001505f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验