Cardiovascular Analytics Group, Laboratory of Cardiovascular Physiology, Hong Kong, China.
School of Data Science, City University of Hong Kong, Kowloon, Hong Kong.
Open Heart. 2021 Feb;8(1). doi: 10.1136/openhrt-2020-001505.
Brugada syndrome (BrS) is an ion channelopathy that predisposes affected patients to spontaneous ventricular tachycardia/fibrillation (VT/VF) and sudden cardiac death. The aim of this study is to examine the predictive factors of spontaneous VT/VF.
This was a territory-wide retrospective cohort study of patients diagnosed with BrS between 1997 and 2019. The primary outcome was spontaneous VT/VF. Cox regression was used to identify significant risk predictors. Non-linear interactions between variables (latent patterns) were extracted using non-negative matrix factorisation (NMF) and used as inputs into the random survival forest (RSF) model.
This study included 516 consecutive BrS patients (mean age of initial presentation=50±16 years, male=92%) with a median follow-up of 86 (IQR: 45-118) months. The cohort was divided into subgroups based on initial disease manifestation: asymptomatic (n=314), syncope (n=159) or VT/VF (n=41). Annualised event rates per person-year were 1.70%, 0.05% and 0.01% for the VT/VF, syncope and asymptomatic subgroups, respectively. Multivariate Cox regression analysis revealed initial presentation of VT/VF (HR=24.0, 95% CI=1.21 to 479, p=0.037) and SD of P-wave duration (HR=1.07, 95% CI=1.00 to 1.13, p=0.044) were significant predictors. The NMF-RSF showed the best predictive performance compared with RSF and Cox regression models (precision: 0.87 vs 0.83 vs. 0.76, recall: 0.89 vs. 0.85 vs 0.73, F1-score: 0.88 vs 0.84 vs 0.74).
Clinical history, electrocardiographic markers and investigation results provide important information for risk stratification. Machine learning techniques using NMF and RSF significantly improves overall risk stratification performance.
Brugada 综合征(BrS)是一种离子通道病,使受影响的患者易发生自发性室性心动过速/颤动(VT/VF)和心源性猝死。本研究旨在探讨自发性 VT/VF 的预测因素。
这是一项对 1997 年至 2019 年间诊断为 BrS 的患者进行的全港回顾性队列研究。主要结局为自发性 VT/VF。使用 Cox 回归识别显著的风险预测因素。采用非负矩阵分解(NMF)提取变量之间的非线性相互作用(潜在模式),并将其作为输入输入随机生存森林(RSF)模型。
本研究纳入了 516 例连续的 BrS 患者(首次就诊时的平均年龄为 50±16 岁,男性占 92%),中位随访时间为 86(IQR:45-118)个月。根据初始疾病表现将队列分为亚组:无症状(n=314)、晕厥(n=159)或 VT/VF(n=41)。VT/VF、晕厥和无症状亚组的年化事件发生率分别为 1.70%、0.05%和 0.01%。多变量 Cox 回归分析显示,VT/VF 的首发表现(HR=24.0,95%CI=1.21 至 479,p=0.037)和 P 波持续时间的标准差(HR=1.07,95%CI=1.00 至 1.13,p=0.044)是显著的预测因素。NMF-RSF 与 RSF 和 Cox 回归模型相比,具有最佳的预测性能(精确性:0.87 与 0.83 与 0.76,召回率:0.89 与 0.85 与 0.73,F1 评分:0.88 与 0.84 与 0.74)。
临床病史、心电图标志物和检查结果为风险分层提供了重要信息。使用 NMF 和 RSF 的机器学习技术可显著提高整体风险分层性能。