State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Glob Chang Biol. 2021 Jun;27(12):2669-2683. doi: 10.1111/gcb.15545. Epub 2021 Mar 14.
Many biotic and abiotic processes contribute to nitrous oxide (N O) production in the biosphere, but N O consumption in the environment has heretofore been attributed primarily to canonical denitrifying microorganisms. The nosZ genes encoding the N O reductase enzyme, NosZ, responsible for N O reduction to dinitrogen are now known to include two distinct groups: the well-studied Clade I which denitrifiers typically possess, and the novel Clade II possessed by diverse groups of microorganisms, most of which are non-denitrifiers. Clade II N O reducers could play an important, previously unrecognized role in controlling N O emissions for several reasons, including: (1) the consumption of N O produced by processes other than denitrification, (2) hypothesized non-respiratory functions of NosZ as an electron sink or for N O detoxification, (3) possible differing enzyme kinetics of Clade II NosZ compared to Clade I NosZ, and (4) greater nosZ gene abundance for Clade II compared to Clade I in soils of many ecosystems. Despite the potential ecological significance of Clade II NosZ, a census of 800 peer-reviewed original research articles discussing nosZ and published from 2013 to 2019 showed that the percentage of articles evaluating or mentioning Clade II nosZ increased from 5% in 2013 to only 22% in 2019. The census revealed that the slowly spreading awareness of Clade II nosZ may result in part from disciplinary silos, with the percentage of nosZ articles mentioning Clade II nosZ ranging from 0% in Agriculture and Agronomy journals to 32% in Multidisciplinary Sciences journals. In addition, inconsistent nomenclature for Clade I nosZ and Clade II nosZ, with 17 different terminologies used in the literature, may have created confusion about the two distinct groups of N O reducers. We provide recommendations to accelerate advances in understanding the role of the diversity of N O reducers in regulating soil N O emissions.
许多生物和非生物过程有助于生物圈中一氧化二氮(N2O)的产生,但迄今为止,环境中 N2O 的消耗主要归因于典型的反硝化微生物。编码 N2O 还原酶(NosZ)的 nosZ 基因负责将 N2O 还原为氮气,现在已知包括两个不同的群体:研究充分的 I 类,典型的反硝化菌拥有,以及新型的 II 类,由多种微生物拥有,其中大多数是非反硝化菌。由于以下几个原因,II 类 N2O 还原剂可能在控制 N2O 排放方面发挥重要的、以前未被认识到的作用,包括:(1)消耗除反硝化作用以外的过程产生的 N2O,(2)NosZ 作为电子汇或 N2O 解毒的假设非呼吸功能,(3)与 I 类 NosZ 相比,II 类 NosZ 可能具有不同的酶动力学,以及(4)与 I 类相比,许多生态系统的土壤中 II 类 nosZ 的基因丰度更高。尽管 II 类 NosZ 具有潜在的生态意义,但对 2013 年至 2019 年期间发表的 800 篇讨论 nosZ 的同行评议原始研究文章的普查显示,评估或提及 II 类 nosZ 的文章比例从 2013 年的 5%增加到 2019 年的 22%。普查显示,II 类 nosZ 缓慢传播的认识可能部分源于学科隔阂,农业和农学杂志中提到 II 类 nosZ 的文章比例为 0%,而多学科科学杂志中提到 II 类 nosZ 的文章比例为 32%。此外,I 类 nosZ 和 II 类 nosZ 的命名不一致,文献中使用了 17 种不同的术语,这可能导致对这两个不同的 N2O 还原群体产生混淆。我们提供了一些建议,以加速对 N2O 还原多样性在调节土壤 N2O 排放中的作用的理解。