Suppr超能文献

致心律失常性右室心肌病相关肌球蛋白调节轻链 E22K 突变降低钙激活张力和刚性,并降低肌球蛋白丝钙敏感性。

Hypertrophic cardiomyopathy associated E22K mutation in myosin regulatory light chain decreases calcium-activated tension and stiffness and reduces myofilament Ca sensitivity.

机构信息

School of Nursing, Medical College, Soochow University, Suzhou, China.

Department of Molecular and Cellular Pharmacology, University of Miami, FL, USA.

出版信息

FEBS J. 2021 Aug;288(15):4596-4613. doi: 10.1111/febs.15753. Epub 2021 Mar 10.

Abstract

UNLABELLED

We investigated the mechanisms associated with E22K mutation in myosin regulatory light chain (RLC), found to cause hypertrophic cardiomyopathy (HCM) in humans and mice. Specifically, we characterized the mechanical profiles of papillary muscle fibers from transgenic mice expressing human ventricular RLC wild-type (Tg-WT) or E22K mutation (Tg-E22K). Because the two mouse models expressed different amounts of transgene, the B6SJL mouse line (NTg) was used as an additional control. Mechanical experiments were carried out on Ca - and ATP-activated fibers and in rigor. Sinusoidal analysis was performed to elucidate the effect of E22K on tension and stiffness during activation/rigor, tension-pCa, and myosin cross-bridge (CB) kinetics. We found significant reductions in active tension (by 54%) and stiffness (active by 40% and rigor by 54%). A decrease in the Ca sensitivity of tension (by ∆pCa ~ 0.1) was observed in Tg-E22K compared with Tg-WT fibers. The apparent (=measured) rate constant of exponential process B (2πb: force generation step) was not affected by E22K, but the apparent rate constant of exponential process C (2πc: CB detachment step) was faster in Tg-E22K compared with Tg-WT fibers. Both 2πb and 2πc were smaller in NTg than in Tg-WT fibers, suggesting a kinetic difference between the human and mouse RLC. Our results of E22K-induced reduction in myofilament stiffness and tension suggest that the main effect of this mutation was to disturb the interaction of RLC with the myosin heavy chain and impose structural abnormalities in the lever arm of myosin CB. When placed in vivo, the E22K mutation is expected to result in reduced contractility and decreased cardiac output whereby leading to HCM.

SUB-DISCIPLINE: Bioenergetics.

DATABASE

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

ANIMAL PROTOCOL

BK20150353 (Soochow University).

RESEARCH GOVERNANCE

School of Nursing: Hua-Gang Hu: seuboyh@163.com; Soochow University: Chen Ge chge@suda.edu.cn.

摘要

目的

研究与肌球蛋白调节轻链(RLC)E22K 突变相关的机制,该突变在人类和小鼠中导致肥厚型心肌病(HCM)。具体来说,我们对表达人心室 RLC 野生型(Tg-WT)或 E22K 突变(Tg-E22K)的转基因小鼠的乳头肌纤维进行了机械特性分析。由于两种小鼠模型表达的转基因数量不同,因此使用 B6SJL 小鼠系(NTg)作为附加对照。对 Ca 2+和 ATP 激活的纤维以及在僵硬状态下进行了机械实验。进行了正弦分析以阐明 E22K 在激活/僵硬、张力-pCa 和肌球蛋白交联(CB)动力学过程中对张力和刚性的影响。我们发现,与 Tg-WT 纤维相比,Tg-E22K 纤维的主动张力(降低 54%)和刚性(主动降低 40%,僵硬降低 54%)明显降低。与 Tg-WT 纤维相比,Tg-E22K 纤维的张力 Ca 敏感性降低(∆pCa~0.1)。E22K 对指数过程 B(2πb:力生成步骤)的表观(=测量)速率常数没有影响,但 Tg-E22K 纤维的指数过程 C(2πc:CB 脱离步骤)的表观速率常数较快。与 Tg-WT 纤维相比,NTg 纤维的 2πb 和 2πc 均较小,表明人 RLC 和鼠 RLC 之间存在动力学差异。E22K 诱导的肌丝刚性和张力降低表明,该突变的主要影响是扰乱 RLC 与肌球蛋白重链的相互作用,并在肌球蛋白 CB 的杠杆臂中引起结构异常。当置于体内时,E22K 突变预计会导致收缩性降低和心输出量降低,从而导致 HCM。

研究领域

生物能量学。

数据来源

支持本研究发现的数据可应合理要求向相应作者索取。

动物实验

BK20150353(苏州大学)。

研究管理

护理学院:华刚虎,seuboyh@163.com;苏州大学:陈歌,chge@suda.edu.cn

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验