Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA.
FEBS J. 2019 Jan;286(1):151-168. doi: 10.1111/febs.14702. Epub 2018 Dec 1.
Myosin regulatory light chain (RLC) phosphorylation is important for cardiac muscle mechanics/function as well as for the Ca -troponin/tropomyosin regulation of muscle contraction. This study focuses on the arginine to glutamine (R58Q) substitution in the human ventricular RLC (MYL2 gene), linked to malignant hypertrophic cardiomyopathy in humans and causing severe functional abnormalities in transgenic (Tg) R58Q mice, including inhibition of cardiac RLC phosphorylation. Using a phosphomimic recombinant RLC variant where Ser-15 at the phosphorylation site was substituted with aspartic acid (S15D) and placed in the background of R58Q, we aimed to assess whether we could rescue/mitigate R58Q-induced structural/functional abnormalities in vitro. We show rescue of several R58Q-exerted adverse phenotypes in S15D-R58Q-reconstituted porcine cardiac muscle preparations. A low level of maximal isometric force observed for R58Q- versus WT-reconstituted fibers was restored by S15D-R58Q. Significant beneficial effects were also observed on the V of actin-activated myosin ATPase activity in S15D-R58Q versus R58Q-reconstituted myosin, along with its binding to fluorescently labeled actin. We also report that R58Q promotes the OFF state of myosin, both in reconstituted porcine fibers and in Tg mouse papillary muscles, thereby stabilizing the super-relaxed state (SRX) of myosin, characterized by a very low ATP turnover rate. Experiments in S15D-R58Q-reconstituted porcine fibers showed a mild destabilization of the SRX state, suggesting an S15D-mediated shift in disordered-relaxed (DRX)↔SRX equilibrium toward the DRX state of myosin. Our study shows that S15D-phosphomimic can be used as a potential rescue strategy to abrogate/alleviate the RLC mutation-induced phenotypes and is a likely candidate for therapeutic intervention in HCM patients.
肌球蛋白调节轻链(RLC)磷酸化对于心肌力学/功能以及钙-肌钙蛋白/原肌球蛋白调节肌肉收缩都很重要。本研究聚焦于人类心室 RLC(MYL2 基因)中的精氨酸到谷氨酰胺(R58Q)取代,该取代与人类恶性肥厚型心肌病相关,并导致转基因(Tg)R58Q 小鼠出现严重的功能异常,包括抑制心脏 RLC 磷酸化。我们使用了一种磷酸模拟重组 RLC 变体,其中磷酸化位点的丝氨酸 15 被替换为天冬氨酸(S15D),并置于 R58Q 的背景下,旨在评估我们是否可以挽救/减轻体外 R58Q 诱导的结构/功能异常。我们在重构的猪心肌标本中发现,S15D-R58Q 可以挽救 R58Q 发挥的多种不良表型。与 WT 重构纤维相比,R58Q 重构纤维的最大等长力水平降低,但通过 S15D-R58Q 得以恢复。在 S15D-R58Q 重构肌球蛋白的肌动球蛋白 ATP 酶活性的 V 值上也观察到显著的有益效果,同时 S15D-R58Q 还与荧光标记的肌动蛋白结合。我们还报告 R58Q 促进了重构猪纤维和 Tg 小鼠乳头肌中肌球蛋白的 OFF 状态,从而稳定了肌球蛋白的超松弛状态(SRX),其特征是 ATP 周转率非常低。在 S15D-R58Q 重构猪纤维中的实验表明,SRX 状态的稳定性略有降低,这表明 S15D 介导的无序松弛(DRX)↔SRX 平衡向肌球蛋白的 DRX 状态转移。我们的研究表明,S15D 磷酸模拟物可用作一种潜在的挽救策略,以消除/减轻 RLC 突变诱导的表型,并且可能成为 HCM 患者治疗干预的候选药物。