Suppr超能文献

验证自然语言处理技术在大型综合健康系统中确定腹主动脉瘤的存在和大小的准确性。

Validation of natural language processing to determine the presence and size of abdominal aortic aneurysms in a large integrated health system.

机构信息

Softek Illuminate, Inc, Overland Park, Kan.

Division of Vascular Surgery, Department of Surgery, Veterans Affairs San Francisco Healthcare System, San Francisco, Calif; Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, Calif.

出版信息

J Vasc Surg. 2021 Aug;74(2):459-466.e3. doi: 10.1016/j.jvs.2020.12.090. Epub 2021 Feb 4.

Abstract

OBJECTIVE

Previous studies of the natural history of abdominal aortic aneurysms (AAAs) have been limited by small cohort sizes or heterogeneous analyses of pooled data. By quickly and efficiently extracting imaging data from the health records, natural language processing (NLP) has the potential to substantially improve how we study and care for patients with AAAs. The aim of the present study was to test the ability of an NLP tool to accurately identify the presence or absence of AAAs and detect the maximal abdominal aortic diameter in a large dataset of imaging study reports.

METHODS

Relevant imaging study reports (n = 230,660) from 2003 to 2017 were obtained for 32,778 patients followed up in a prospective aneurysm surveillance registry within a large, diverse, integrated healthcare system. A commercially available NLP algorithm was used to assess the presence of AAAs, confirm the absence of AAAs, and extract the maximal diameter of the abdominal aorta, if stated. A blinded expert manual review of 18,000 randomly selected imaging reports was used as the reference standard. The positive predictive value (PPV or precision), sensitivity (recall), and the kappa statistics were calculated.

RESULTS

Of the randomly selected 18,000 studies that underwent expert manual review, 48.7% were positive for AAAs. In confirming the presence of an AAA, the interrater reliability of the NLP compared with the expert review showed a kappa value of 0.84 (95% confidence interval [CI], 0.83-0.85), with a PPV of 95% and sensitivity of 88.5%. The NLP algorithm showed similar results for confirming the absence of an AAA, with a kappa of 0.79 (95% CI, 0.799-0.80), PPV of 77.7%, and sensitivity of 91.9%. The kappa, PPV, and sensitivity of the NLP for correctly identifying the maximal aortic diameter was 0.88 (95% CI, 0.87-0.89), 88.8%, and 88.2% respectively.

CONCLUSIONS

The use of NLP software can accurately analyze large volumes of radiology report data to detect AAA disease and assemble a contemporary aortic diameter-based cohort of patients for longitudinal analysis to guide surveillance, medical management, and operative decision making. It can also potentially be used to identify from the electronic medical records pre- and postoperative AAA patients "lost to follow-up," leverage human resources engaged in the ongoing surveillance of patients with AAAs, and facilitate the construction and implementation of AAA screening programs.

摘要

目的

先前对腹主动脉瘤(AAA)自然史的研究受到队列规模小或对汇总数据进行异质分析的限制。自然语言处理(NLP)通过快速有效地从健康记录中提取影像数据,有可能极大地改善我们对 AAA 患者的研究和护理方式。本研究旨在测试 NLP 工具准确识别大量影像学研究报告中 AAA 存在或不存在以及检测最大腹主动脉直径的能力。

方法

从大型、多样化、综合性医疗保健系统中前瞻性动脉瘤监测登记处随访的 32778 名患者中获取了 2003 年至 2017 年的相关影像学研究报告(n=230660)。使用商业 NLP 算法来评估 AAA 的存在,确认 AAA 的不存在,并提取腹主动脉的最大直径(如果有声明)。对 18000 份随机选择的影像学报告进行盲法专家手动审查作为参考标准。计算阳性预测值(PPV 或精度)、敏感性(召回率)和kappa 统计量。

结果

在专家手动审查的随机选择的 18000 项研究中,有 48.7%为 AAA 阳性。在确认 AAA 的存在时,NLP 与专家审查的组内一致性显示kappa 值为 0.84(95%置信区间[CI],0.83-0.85),PPV 为 95%,敏感性为 88.5%。NLP 算法在确认不存在 AAA 方面也得到了类似的结果,kappa 值为 0.79(95%CI,0.799-0.80),PPV 为 77.7%,敏感性为 91.9%。NLP 正确识别最大主动脉直径的 kappa 值、PPV 和敏感性分别为 0.88(95%CI,0.87-0.89)、88.8%和 88.2%。

结论

使用 NLP 软件可以准确分析大量放射学报告数据,以检测 AAA 疾病,并为纵向分析组装一个基于当代主动脉直径的患者队列,以指导监测、医疗管理和手术决策。它还可以潜在地从电子病历中识别出术前和术后的 AAA 患者“随访丢失”,利用人力资源参与 AAA 患者的持续监测,并促进 AAA 筛查计划的构建和实施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验